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MAT6081A Topics in Analysis I

2nd term, 2016-17

Teacher: Professor Ka-Sing Lau

Schedule: Wednesday, 2.30-5.00 pm

Venue: LSB 222

Topics: Introduction to Stochastic Calculus

In the past thirty years, there has been an increasing demand of stochastic

calculus in mathematics as well as in various disciplines such as mathematical

finance, pde, physics and biology. The course is a rigorous introduction to this

topic. The material include conditional expectation, Markov property, mar-

tingales, stochastic processes, Brownian motions, Ito’s calculus, and stochastic

differential equations.

Prerequisites

Students are expected to have good background in real analysis, probability

theory and some basic knowledge of stochastic processes.

References: There will be lecture notes. The other references include

1. A Course in Probability Theory, K.L. Chung, (1974).

2. Measure and Probability, P. Billingsley, (1986).

3. Introduction to Stochastic Integration, H.H. Kuo, (2006).

4. Intro. to Stochastic Calculus with Application, F. Klebaner, (2001).

5. Brownian Motion and Stoch. Cal., I. Karatzas and S. Shreve, (1998).

6. Stoch. Cal. for Finance II– Continuous time model, S. Shreve, (2004).
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Everyone knows calculus deals with deterministic objects. On the other

hand stochastic calculus deals with random phenomena. The theory was intro-

duced by Kiyosi Ito in the 40’s, and therefore stochastic calculus is also called

Ito calculus. Besides its interest in mathematics, it has been used extensively

in statistical mechanics in physics, the filter and control theory in engineering.

Nowadays it is very popular in the option price and hedging in finance. For

example the well-known Black-Scholes model is

dS(t) = rS(t)dt + σS(t)dB(t)

where S(t) is the stock price, σ is the volatility, and r is the interest rate,

and B(t) is the Brownian motion. The most important notion for us is the

Brownian motion. As is known the botanist R. Brown (1828) discovered certain

zigzag random movement of pollens suspended in liquid. A. Einstein (1915)

argued that the movement is due to bombardment of particle by the molecules

of the fluid. He set up some basic equations of Brownian motion and use them

to study diffusion. It was N. Wiener (1923) who made a rigorous study of the

Brownian motion using the then new theory of Lebesgue measure. Because of

that a Brownian motion is also frequently called a Wiener process.

Just like calculus is based on the fundamental theorem of calculus, the Ito

calculus is based on the Ito Formula: Let f be a twice differentiable function

on R, then

f(B(t))− f(B(0)) =

∫ T

0

f ′(B(t))dB(t) +
1

2

∫ T

0

f ′′(B(t))dt

where B(0) = 0 to denote the motion starts at 0. There are formula for

integration, for example, we have∫ T

0

B(t)dB(t) =
1

2
B(t)2 − 1

2
T ;

∫ T

0

tdB(t) = TB(T )−
∫ T

0

B(t)dt.

In this course, the prerequisite is real analysis and basic probability theory.

In real analysis, one needs to know σ-fields, measurable functions, measures
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and integration theory, various convergence theorems, Fubini theorem and the

Radon-Nikodym theorem. We will go through some of the probability theory

on conditional expectation, optional r.v. (stopping time), Markov property,

martingales ([1], [2]). Then we will go onto study the Brownian motion ([2],

[3], [5]), the stochastic integration and the Ito calculus ([3], [4], [5]).
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Chapter 1

Basic Probability Theory

1.1 Preliminaries

Let Ω be a set and let F be a family of subsets of Ω, F is called a field if it

satisfies

(i) ∅, Ω ∈ F ;

(ii) for any A ∈ F , Ac ∈ F ;

(iii) for any A, B ∈ F , A ∪B ∈ F (hence A ∩B ∈ F).

It is called a σ-field if (iii) is replaced by

(iii)′ for any {An}∞n=1 ⊂ F , ∪∞
n=1An ∈ F (hence ∩∞

n=1An ∈ F).

If Ω = R and F is the smallest σ-field generated by the open sets, then we

call it the Borel field and denote by B.

A probability space is a triple (Ω,F , P ) such that F is a σ-field in Ω, and

P : F → [0, 1] satisfies

5
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(i) P (Ω) = 1

(ii) countable additivity : if {An}∞n=1 ⊆ F is a disjoint family, then

P (
∞∪
n=1

An) =
∞∑
n=1

P (An).

We call Ω a sample space, A ∈ F an event (or measurable set) and P a

probability measure on Ω; an element ω ∈ Ω is called an outcome.

Theorem 1.1.1. (Caratheodory Extension Theorem) Let F0 be a field of

subsets in Ω and let F be the σ− field generated by F0. Let P : F0 → [0, 1]

satisfies (i) and (ii) (on F0). Then P can be extended uniquely to F , and

(Ω,F , P ) is a probability space.

The proof of the theorem is to use the outer measure argument.

Example 1. Let Ω = [0, 1], let F0 be the family of set consisting of finite

disjoint unions of half open intervals (a, b] and [0, b], Let P ((a, b]) = |b − a|.

Then F is the Borel field and P is the Lebesgue measure on [0, 1].

Example 2. Let {(Ωn,Fn, Pn)}n be a sequence of probability spaces. Let

Ω =
∏∞

n=1Ωn be the product space and let F0 be the family of subsets of the

form E =
∏∞

n=1En, where En ∈ Fn, En = Ωn except for finitely many n.

Define

P (E) =
∞∏
n=1

Pn(En)

Let F be the σ-field generated F0, then (Ω,F , P ) is the standard infinite

product measure space.

Example 3. (Kolmogorov Extension Theorem) Let Pn be probability mea-

sures on (
∏n

k=1 Ωk,Fn) satisfying the following consistency condition: for m ≤

n

Pn ◦ πnm−1 = Pm
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where πnm(x1 · · · xn) = (x1 · · · xm). On Ω =
∏∞

k=1Ωk, we let F0 be the field of

sets F = E ×
∏∞

k=n+1Ωk, E ∈ Fn and let

P (F ) = Pn(E).

Then this defines a probability spaces (Ω, F , P ), where F is the σ-field gen-

erated by F0.

Remark: The probability space in Example 2 is the underlying space for

a sequence of independent random variables. Example 3 is for more general

sequence of random variables (with the consistency condition).

A random variable (r.v.) X on (Ω,F) is an (extended) real valued function

X : (Ω,F) → R such that for any Borel subset B of R,

X−1(B) = {ω : X(ω) ∈ B} ∈ F .

(i.e. X is F -measurable). We denote this by X ∈ F . It is well known that

− For X ∈ F , X is either a simple function (i.e.,
∑n

k=1 akχAk
(ω) where

Ak ∈ F), or is the pointwise limit of a sequence of simple functions.

− Let X ∈ F and g is a Borel measurable function, then g(X) ∈ F .

− If {Xn} ⊆ F and limn→∞Xn = X, then X ∈ F .

− Let FX be the σ-field generated by X, i.e., the sub-σ-field {X−1(B) : B ∈

B}. Then for any Y ∈ FX , Y = φ(X) for some extended-valued Borel function

φ on R.

Sketch of proof ([1, p.299]): First prove this for simple r.v. Y so that

Y = φ(X) for some simple function φ. For a bounded r.v. Y ≥ 0, we can

find a sequence of increasing simple functions {Yn} such that Yn = φn(X) and
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Yn ↗ Y . Let φ(x) = limnφn(x), hence Y = φ(X). Then prove Y for the

general case.

A r.v. X : (Ω,F) → R induces a distribution (function) on R:

F (x) = FX(x) = P (X ≤ x).

It is a non-decreasing, right continuous function with limn→−∞ F (x) = 0,

limn→∞ F (x) = 1. The distribution defines a measure µ

µ((a, b]) = F (b)− F (a)

(use the Caratheodory Extension Theorem here). More directly, we can define

µ by

µ(B) = P (X−1(B)) , B ∈ B.

The jump of F at x is F (x)−F (x−) = P (X = x). A r.v. X is called a discrete

if F is a jump function; X is called a continuous r.v. if F is continuous, i.e.,

P (X = x) = 0 for each x ∈ R, and X is said to have a density function f(x) if

F is absolutely continuous with the Lebesgue measure and f(x) = F ′(x) a.e.,

equivalently F (x) =
∫ x

−∞ f(y)dy.

For two random variables X, Y on (Ω,F), the random vector (X,Y ) :

(Ω,F) → R2 induces a distribution F on R2

F (x, y) = P (X ≤ x, Y ≤ y)

and F is called the joint distribution of (X, Y ), the corresponding measure µ

is given by

µ((a, b]× (c, d]) = F (b, d)− F (a, d)− F (b, c) + F (a, c),

Similarly we can define the joint distribution F (x1 · · · xn) and the correspond-

ing measure.
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For a sequence of r.v., {Xn}∞n=1, there are various notions of convergence.

(a) Xn → X a.e. (or a.s.) if limn→∞Xn(ω) = X(ω) (pointwise) for ω ∈ Ω\E

where P (E) = 0.

(b) Xn → X in probability if for any ϵ > 0, limn→∞ P (|Xn −X| ≥ ϵ) = 0.

(c) Xn → X in distribution if Fn(x) → F (x) at every continuity point x of

F . It is equivalent to µn → µ vaguely i.e., µn(f) → µ(f) for all f ∈ C0(R),

the space of continuous functions vanish at ∞ (detail in [1]).

The following relationships are basic ([1] or Royden): (a) ⇒ (b) ⇒ (c);

(b) ⇒ (a) on some subsequence. On the other hand we cannot expect (c)

to imply (b) as the distribution does not determine X. For example consider

the interval [0, 1] with the Lebesgue measure, the r.v.’s X1 = χ[0, 1
2
], X2 =

χ[ 1
2
,1], X3 = χ[0, 1

4
] + χ[ 3

4
,1] all have the same distribution.

The expectation of a random variable is defined as

E(X) =

∫
Ω

X(ω)dP (ω) =

∫ ∞

−∞
xdF (x) (=

∫ ∞

−∞
xdµ(x))

and for a Borel measurable h, we have

E(h(X)) =

∫
Ω

h(X(ω))dP (ω) =

∫ ∞

−∞
h(x)dF (x).

The most basic convergence theorems are:

(a) Fatou lemma:

Xn ≥ 0, then E(limn→∞Xn) ≤ limn→∞E(Xn).

(b) Monotone convergence theorem:

Xn ≥ 0, Xn ↗ X, then lim
n→∞

E(Xn) = E(X).
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(c) Dominated convergence theorem:

|Xn| ≤ Y, E(Y ) <∞ and Xn → X a.e., then lim
n→∞

E(Xn) = E(X).

We say that Xn → X in Lp, p > 0 if E(|X|p) < ∞ and E(|Xn −X|p) → 0

as n→ ∞. It is known that Lp convergence implies convergence in probability.

The converse also holds if we assume further E(|Xn|p) → E(|X|p) < ∞ ([1],

p.97).

Two events A,B ∈ F are said to be independent if

P (A ∩B) = P (A)P (B).

Similarly we say that the events A1, · · ·An ∈ F are independent if for any

subsets Aj1 , · · · , Ajk ,

P (
k∩

i=1

Aji) =
k∏

i=1

P (Aji).

Two sub-σ-fields F1 and F2 are said to be independent if any choice of two sets

from each of these σ-fields are independent. Two r.v.’s X, Y are independent

if the σ-fields FX and FY they generated are independent. Equivalently we

have

P (X ≤ x, Y ≤ y) = P (X ≤ x) P (Y ≤ y),

(i.e., the joint distribution equals the product of their marginal distributions).

We say that X1 · · ·Xn are independent if for any Xi1 · · ·Xik , their joint distri-

bution is a product of their marginal distributions.

Proposition 1.1.2. Let X,Y be independent, then f(X) and g(Y ) are inde-

pendent for any Borel measurable functions f and g.
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Exercises

1. Can you identify the interval [0, 1] with the Lebesgue measure to the prob-

ability space for tossing a fair coin repeatedly?

2. Prove Proposition 1.1.2.

3. Suppose that supn |Xn| ≤ Y and E(Y ) <∞. Show that

E(limn→∞Xn) ≥ limn→∞E(Xn)

4. If p > 0 and E(|X|p) < ∞, then limn→∞ xpP (|X| > x) = 0. Conversely, if

limn→∞ xpP (|X| > x) = 0, then E(|X|p−ϵ) <∞ for 0 < ϵ < p .

5. For any d.f. F and any a ≥ 0, we have∫ ∞

−∞
(F (x+ a)− F (x))dx = a

6. Let X be a positive r.v. with a distribution F , then∫ ∞

0

(1− F (x)) dx =

∫ ∞

0

x dF (x).

and

E(X) =

∫ ∞

0

P (X > x) dx =

∫ ∞

0

P (X ≥ x) dx

7. Let {Xn} be a sequence of identically distributed r.v. with finite mean,

then

lim
n

1

n
E( max

1≤j≤n
|Xj|) = 0.

(Hint: use Ex.6 to express the mean of the maximum)

8. If X1, X2 are independent r.v.’s each takes values +1 and −1 with prob-

ability 1
2
, then the three r.v.’s {X1, X2, X1X2} are pairwise independent but

not independent.

9. A r.v. is independent of itself if and only if it is constant with probability

one. Can X and f(X) be independent when f ∈ B?
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10 . Let {Xj}nj=1 be independent with distributions {Fj}nj=1. Find the distri-

bution for maxj Xj and minj Xj.

11. If X and Y are independent and E(|X + Y |p) < ∞ for some p > 0, then

E(|X|p) <∞ and E(|Y |p) <∞.

12. If X and Y are independent, E(|X|p) <∞ for some p ≥ 1, and E(Y ) = 0,

then E(|X + Y |p) ≥ E(|X|p).
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1.2 Conditional Expectation

Let Λ ∈ F with P (Λ) > 0, we define

P (E|Λ) = P (Λ ∩ E)
P (Λ)

where P (Λ) > 0.

It follow that for a discrete random vector (X, Y ),

P (Y = y|X = x) =


P (Y = y, X = x)

P (X = x)
, if P (X = x) > 0 ,

0 , otherwise.

Moreover if (X, Y ) is a continuous random variable with joint density f(x, y),

the conditional density of Y given X = x is

f(y|x) =


f(x, y)

fX(x)
, if fX(x) > 0 ,

0 , otherwise .

where fX(x) =
∫∞
−∞ f(x, y)dy is the marginal density. The conditional expec-

tation of Y given X = x is

E(Y |X = x) =

∫ ∞

−∞
yf(y|x)dy.

Note that

g(x) := E(Y |X = x) is a function on x ,

and hence

g(X(·)) := E(Y |X(·)) is a r.v. on Ω . (1.2.1)

In the following we have a more general consideration for the conditional

expectation (and also the conditional probability): E(Y |G) where G is a sub-

σ-field of F .

First let us look at a special case where G is generated by a measurable

partition {Λn}n of Ω (each member in G is a union of {Λn}n). Let Y be an
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integrable r.v., then

E(Y |Λn) =

∫
Ω

Y (ω)dPΛn(ω) =
1

P (Λn)

∫
Λn

Y (ω)dP (ω). (1.2.2)

(Here PΛn(·) =
P ( · ∩ Λn)

P (Λn)
is a probability measure for P (Λn) > 0). Consider

the random variable (as in (1.2.1))

Z(·) = E(Y |G)(·) :=
∑
n

E(Y |Λn)χΛn(·) ∈ G.

It is easy to see that if ω ∈ Λn, then Z(ω) = E(Y |Λn), and moreover∫
Ω

E(Y |G)dP =
∑
n

∫
Λn

E(Y |G)dP =
∑
n

E(Y |Λn)P (Λn) =

∫
Ω

Y dP .

We can also replace Ω by Λ ∈ G and obtain∫
Λ

E(Y |G)dP =

∫
Λ

Y dP ∀ Λ ∈ G.

Recall that for µ, ν two σ-finite measures on (Ω,F) and µ ≥ 0, ν is called

absolutely continuous with respect to µ (ν ≪ µ) if for any Λ ∈ F and

µ(Λ) = 0, then ν(Λ) = 0. The Radon-Nikodym theorem says that there exists

g =
dν

dµ
such that

ν(Λ) =

∫
Λ

gdµ ∀ Λ ∈ F .

Theorem 1.2.1. If E(|Y |) < ∞ and G is a sub-σ-field of F , t hen there

exists a unique G-measurable r.v., denote by E(Y |G) ∈ G, such that∫
Λ

Y dP =

∫
Λ

E(Y |G) dP ∀ Λ ∈ G.

Proof. Consider the set-valued function

ν(Λ) =

∫
Λ

Y dP Λ ∈ G.
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Then ν is a “signed measure” on G. It satisfies

P (Λ) = 0 =⇒ ν(Λ) = 0.

Hence ν is absolutely continuous with respect to P . By the Radon-Nikodym

theorem, the derivative g = dν
dP

∈ G and∫
Λ

Y dP = v(Λ) =

∫
Λ

gdP ∀ Λ ∈ G.

This g is unique: for if we have g1 ∈ G satisfies the same identity,∫
Λ

Y dP = v(Λ) =

∫
Λ

g1dP ∀ Λ ∈ G.

Let Λ = {g > g1} ∈ G, then
∫
Λ
(g − g1)dP = 0 implies that P (Λ) = 0. We can

reverse g and g1 and hence we have P (g ̸= g1) = 0. It follows that g = g1 G-a.e.

Definition 1.2.2. Given an integrable r.v. Y and a sub-σ-field G, we say

that E(Y |G) is the conditional expectation of Y with respect to G (also denote

by EG(Y ) ) if it satisfies

(a) E(Y |G) ∈ G;

(b)
∫
Λ
Y dP =

∫
Λ
E(Y |G)dP ∀ Λ ∈ G.

If Y = χ∆ ∈ F , we define P (∆|G) = E(χ∆|G) and call this the conditional

probability with respect to G.

Note that the conditional probability can be put in the following way:

(a)′ P (∆|G) ∈ G;

(b)′ P (∆ ∩ Λ) =
∫
Λ
P (∆|G)dP ∀ Λ ∈ G.

It is a simple exercise to show that the original definition of P (∆|Λ) agrees

with this new definition by taking G = {∅, Λ, Λc, Ω}.
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Note that E(Y |G) is “almost everywhere” defined, and we call one such

function as a “version” of the conditional expectation. For brevity we will not

mention the “a.e.” in the conditional expectation unless necessary. If G is the

sub-σ-field FX generated by a r.v. X, we write E(Y |X) instead of E(Y |FX).

Similarly we can define E(Y |X1, · · · , Xn).

Proposition 1.2.3. For E(Y |X) ∈ FX , there exists an extended-valued Borel

measurable φ such that E(Y |X) = φ(X), and φ is given by

φ =
dλ

dµ
,

where λ(B) =
∫
X−1(B)

Y dP, B ∈ B, and µ is the associated probability of the

r.v. X on R.

Proof. Since E(Y |X) ∈ FX , we can write E(Y |X) = φ(X) for some Borel

measurable φ (see §1). For Λ ∈ F , there exists B ∈ B such that Λ = X−1(B).

Hence∫
Λ

E(Y |X)dP =

∫
Ω

χB(X)φ(X)dP =

∫
R
χB(X)φ(X)dµ =

∫
B

φ(x)dµ

On the other hand by the definition of conditional probability,∫
Λ

E(Y |X)dP =

∫
X−1(B)

Y dP = λ(B).

It follows that λ(B) =
∫
B
φ(x)dµ for all B ∈ B. Hence φ =

dλ

dµ
. �

The following are some simple facts of the conditional expectation:

− If G = {ϕ,Ω}, then E(Y |G) is a constant function and equals E(Y ).

− If G = {ϕ,Λ,Λc,Ω}, then E(Y |G) is a simple function which equals

E(Y |Λ) on Λ, and equals E(Y |Λc) on Λc,
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− If G = F or Y ∈ G, then E(Y |G) = Y .

− If (X, Y ) has a joint density function, then E(Y |X) coincides with the

expression in (1.2.1).

Using the defining relationship of conditional expectation, we can show

that the linearity, the basic inequalities and the convergence theorems for E(·)

also hold for E(· |G). For example we have

Proposition 1.2.4. (Jensen inequality) If φ is a convex function on R, and

Y and φ(Y ) are integrable r.v., then for each sub-σ-algebra G,

φ
(
E(Y |G)

)
≤ E

(
φ(Y )|G

)

Proof. If Y is a simple r.v., then Y =
∑n

j=1 yjχΛj
with Λ ∈ F . It follows that

E(Y |G) =
n∑

j=1

yjE(χΛj
|G) =

n∑
j=1

yjP (YΛj
|G)

and

E(φ(Y )|G) =
n∑

j=1

φ(yj)P (YΛj
|G).

Since
∑n

j=1 P (Λj|G) = 1, the inequality holds by the convexity of φ.

In general we can find a sequence of simple r.v. {Ym} with |Ym| ≤ |Y |

and Ym → Y , then apply the above together with the dominated convergence

theorem. �

Proposition 1.2.5. Let Y and Y Z be integrable r.v. and Z ∈ G, then we

have

E(Y Z|G) = ZE(Y |G).
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Proof. It suffices to show that for Y, Z ≥ 0∫
Λ

ZE(Y |G)dP =

∫
Λ

ZY dP ∀ Λ ∈ G.

Obviously, this is true for Z = χ∆, ∆ ∈ G. We can pass it to the simple

r.v. Then use the monotone convergence theorem to show that it hold for all

Z ≥ 0, and then the general integrable r.v. �

Proposition 1.2.6. Let G1 and G2 be sub-σ-fields of F and G1 ⊆ G2. Then

for Y integrable r.v.

E(E(Y |G2)|G1) = E(Y |G1) = E(E(Y |G1)|G2). (1.2.3)

Moreover

E(Y |G1) = E(Y |G2) iff E(Y |G2) ∈ G1. (1.2.4)

Proof. Let Λ ∈ G1, then Λ ∈ G2. Hence∫
Λ

E(E(X|G2)|G1)dP =

∫
Λ

E(Y |G2)dP =

∫
Λ

Y dP =

∫
Λ

E(Y |G1)dP,

and the first identity in (1.2.3) follows. The second identity is by E(Y |G1) ∈ G2

(recall that Z ∈ G implies E(Z|G) = Z).

For the last part, the necessity is trivial, and the sufficiency follows from

the first identity. �

As a simple consequence, we have

Corollary 1.2.7. E(E(Y |X1, X2)|X1) = E(Y |X1) = E(E(Y |X1)|X1, X2).
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Exercises

1. (Bayes’ rule) Let {Λn} be a F -measurable partition of Ω and let E ∈ F

with P (E) > 0. Then

P (Λn|E) =
P (Λn) P (E|Λn)∑
n P (Λn)P (E|Λn)

.

2. If the random vector (X,Y ) has probability density p(x, y) and X is inte-

grable, then one version of E(X|X + Y = z) is given by∫
xp(x, z − x)dx

/ ∫
p(x, z − x)dx .

3. Let X be a r.v. such that P (X > t) = e−t, t > 0. Compute E(X|X ∨ t)

and E(X|X ∧ t) for t > 0. ( Here ∨ and ∧ mean maximum and minimum

respectively.

4. If X is an integrable r.v., Y is a bounded r.v., and G is a sub-σ-field, then

E
(
E(X|G)Y

)
= E

(
XE(Y |G)

)
.

5. Prove that var(E(Y |G)) ≤ var(Y ).

6. Let X, Y be two r.v., and let G be a sub-σ-field. Suppose

E(Y 2|G) = X2, E(Y |G) = X,

then Y = X a.e.

7. Give an example that E(E(Y |X1)|X2) ̸= E(E(Y |X2)|X1). (Hint: it suf-

fices to find an example E(X|Y ) ̸= E(E(X|Y )|X) for Ω to have three points).



20 CHAPTER 1. BASIC PROBABILITY THEORY

1.3 Markov Property

Let A be an index set and let {Fα : α ∈ A} be family of sub-σ-fields of F . We

say that the family of Fα’s are conditionally independent relative to G if for

any Λi ∈ Fαi
i = 1, · · · , n,

P (
n∩

j=1

Λj|G) =
n∏

j=1

P (Λi|G). (1.3.1)

Proposition 1.3.1. For α ∈ A, let F (α) denote the sub-σ-field generated by

Fβ, β ∈ A\{α}. Then the family {Fα}α are conditionally independent relative

to G if and only if

P (Λ| F (α) ∨ G) = P (Λ| G), Λ ∈ Fα

where F (α) ∨ G is the sub-σ-field generated by F (α) and G.

Proof. We only prove the case A = {1, 2}, i.e.,

P (Λ| F2 ∨ G) = P (Λ| G), Λ ∈ F1. (1.3.2)

The general case follows from the same argument. To prove the sufficiency, we

assume (1.3.2). To check (1.3.1), let Λ ∈ F1, then for M ∈ F2,

P (Λ ∩M |G) = E(P (Λ ∩M |F2 ∨ G)|G)

= E(P (Λ| F2 ∨ G)χM |G)

= E(P (Λ| G)χM |G) (by (1.3.2))

= P (Λ| G)P (M | G).

Hence F1 and F2 are G-independent.

To prove the necessity, suppose (1.3.1) holds, we claim that for ∆ ∈ G,

Λ ∈ F1 and M ∈ F2,∫
M∩∆

P (Λ|G) dP =

∫
M∩∆

P (Λ| F2 ∨ G) dP
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Since the sets of the formM∩∆ generate G∨F2, we have P (Λ|G) = P (Λ| F2∨

G). i.e., (1.3.2) holds.

The claim follows from the following: let Λ ∈ F1, M ∈ F2, then

E(P (Λ|G)χM |G) = P (Λ|G)P (M |G)

= P (Λ ∩M |G) (by (1.3.1))

= E(P (Λ|F2 ∨ G)χM |G) �

Corollary 1.3.2. Let {Xα}α∈A be a family of r.v. and let Fα be the sub-σ-

field generated by Xα. Then the Xα’s are independent if and only if for any

Borel set B,

P (Xα ∈ B|F (α)) = P (Xα ∈ B).

Moreover the above condition can be replaced by: for any integrable Y ∈ Fα,

E(Y |F (α)) = E(Y ).

Proof. The first identity follows from Proposition 1.3.1 by taking G as the

trivial σ-field. The second one follows from an approximation by simple func-

tion and use the first identity. �

To consider the Markov property, we first consider an important basic case.

Theorem 1.3.3. Let {Xn}∞n=1 be a sequence of independent r.v. and each Xn

has a distribution µn on R. Let Sn =
∑n

j=1Xj. Then for B ∈ B,

P (Sn ∈ B | S1, · · · , Sn−1) = P (Sn ∈ B | Sn−1) = µn(B − Sn−1)

(Hence Sn is independent of S1, · · · , Sn−2 given Sn−1.)
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Proof. We divide the proof into two steps.

Step 1. We show that

P (X1 +X2 ∈ B | X1) = µ2(B −X1)

First observe that µ2(B −X1) is in FX1 . Let Λ ∈ FX1 , then Λ = X−1
1 (A) for

some A ∈ B, and∫
Λ

µ2(B −X1) dP =

∫
A

µ2(B − x1) dµ1(x1)

=

∫
A

(∫
x1+x2∈B

dµ2(x2)
)
dµ1(x1)

=

∫∫
x1∈A, x1+x2∈B

d(µ1 × µ2)(x1, x2)

= P (X1 ∈ A, X1 +X2 ∈ B)

=

∫
Λ

P (X1 +X2 ∈ B | FX1) dP

This implies that µ2(B −X1) = P (X1 +X2 ∈ B | X1) .

Step 2. The second equality in the proposition follows from Step 1 by

applying to Sn−1 andXn. To prove the first identity, we let µ
n = µ1×· · ·×µn =

µn−1 × µn. Let Bj ∈ B, 1 ≤ j ≤ n − 1, and let Λ =
∩n−1

j=1 S
−1
j (Bj) ∈

F(S1, · · · , Sn−1). We show as in Step 1,∫
Λ

µn(B − Sn−1) dP =

∫
Λ

P (Sn ∈ B|S1, · · · , Sn−1) dP

and the identity µn(B − Sn−1) = P (Sn ∈ B|S1, · · · , Sn−1) follows. �

Definition 1.3.4. We call a sequence of random variables {Xn}∞n=0 a (discrete

time) stochastic process. It is called a Markov process (Markov chain if the

state space is countable or finite) if for any n and B ∈ B,

P (Xn+1 ∈ B|X0, · · · , Xn) = P (Xn+1 ∈ B|Xn).
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Let I ⊆ N0 := N ∪ {0} and let FI denote the sub-σ-field generated by

Fn, n ∈ I. Typically, I = {n}, or [0, n], or (n,∞); F{n} denotes the events

at the present, F[0,n] denotes the events from the past up to the present, and

F(n,∞) denotes the events in the future. The above Markov property means

the future depends on the present and is independent of the past.

One of the most important examples of Markov process is the sequence

{Sn}∞n=0 in Theorem 1.2.3.

Theorem 1.3.5. Let {Xn}∞n=0 be a stochastic process, then the following are

equivalent:

(a) {Xn}∞n=0 has the Markov property;

(b) P (M |F[0,n]) = P (M |Xn) for all n ∈ N and M ∈ F(n,∞);

(c) P (M1 ∩M2 |Xn) = P (M1|Xn) P (M2|Xn) for all M1 ∈ F[0,n], M2 ∈

F(n,∞) and n ∈ N.

The conditions remain true if F(n,∞) is replaced by F[n,∞) (Exercise). Con-

dition (c) can be interpreted as conditioning on the present, the past and the

future are independent.

Proof. (b) ⇒ (c). Let Yi = χMi
with M1 ∈ F[0,n], M2 ∈ F(n,∞), then

P (M1|Xn) P (M2|Xn) = E(Y1|Xn) E(Y2|Xn) = E(Y1E(Y2|Xn)|Xn)

= E(Y1E(Y2|F[0,n])|Xn) = E(E(Y1Y2|F[0,n])|Xn)

= E(Y1Y2|Xn) = P (M1 ∩M2 |Xn).

(c) ⇒ (b). Let Λ ∈ F[0,n] be the test set, and let Y1 = χΛ, Y2 = χM ∈
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F(0,∞). Then∫
Λ

P (M |Xn) dP = E
(
Y1E(Y2|Xn)

)
= E

(
E(Y1E(Y2|Xn))|Xn

)
= E

(
E(Y1|Xn)E(Y2|Xn)

)
= E

(
E(Y1Y2|Xn)

)
=

∫
Ω

P (Λ ∩M |Xn) dP = P (Λ ∩M).

This implies P (M |Xn) = P (M |F[0,n]).

(b) ⇒ (a) is trivial.

(a) ⇒ (b). We claim that for each n,

E(Y |F[0,n]) = E(Y | Xn) ∀ Y ∈ F[n+1,n+k], k = 1, 2, · · · . (1.3.3)

This will establish (b) for M ∈
∪∞

k=1F(n,n+k); this family of M generates

F(0,∞).

Note that the Markov property implies (1.3.3) is true for k = 1. Suppose

the statement is true for k, we consider Y = Y1Y2 ∈ F[n+1,n+k+1] , where

Y1 ∈ F[n+1,n+k] and Y2 ∈ Fn+k+1. Then

E(Y |F[0,n]) = E( E(Y |F[0,n+k]) | F[0,n])

= E( Y1E(Y2|F[0,n+k]) | F[0,n])

= E( Y1E(Y2|Fn+k) | F[0,n]) (by Markov)

= E( Y1E(Y2|Fn+k) | Fn) (by induction)

= E( Y1E(Y2|F[n,n+k]) | F[0,n]) (by Markov)

= E( E(Y1Y2|F[n,n+k]) | F[0,n])

= E(Y1Y2|Fn)

= E(Y |Fn).

This implies the inductive step for Y = χM1∩M2 = χM1χM2 with M1 ∈

F[n+1,n+k] and M2 ∈ Fn+k+1. But the class of all such Y generates F[n+1,n+k].

This implies the claim and completes the proof of the theorem. �
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The following random variable plays a central role in stochastic process.

Definition 1.3.6. A r.v. α : Ω → N0 ∪ {∞} is called a stopping time (or

Markov time or optional r.v. ) with respect to {Xn}∞n=0 if

{ω : α(ω) = n} ∈ F[0,n] for each n ∈ N0 ∪ {∞}.

It is easy to see the definition can be replaced by {ω : α(ω) ≤ n} ∈ F[0,n].

In practice, the most important example is: for a given A ∈ B, let

αA(ω) = min{n ≥ 0 : Xn(ω) ∈ A}.

(αA(ω) = ∞ if Xn(ω) ̸∈ A for all n.) This is the r.v. of the first time the

process {Xn}∞n=0 enters A. It is clear that

{ω : αA(ω) = n} =
n−1∩
j=0

{ω : Xj(ω) ∈ Ac, Xn(ω) ∈ A} ∈ F[0,n],

and similarly for n = ∞. Hence αA is a stopping time.

Very often α represents the random time that a specific event happens,

and {Xα+n}∞n=1 is the process after the event has occurred. We will use the

following terminologies:

− The pre-α field Fα is the sets Λ ∈ F[0,∞) of the form

Λ =
∪

0≤n≤∞

{{α = n} ∩ Λn}, Λn ∈ F[0,n]. (1.3.4)

It follows that Λ ∈ Fα if and only if {α = n} ∩ Λ ∈ Fn for each n.

− The post α-process is {Xα+n}∞n=1 whereXα+n(ω) = Xα(ω)+n(ω). The post-α

field F ′
α is the sub-σ-field generated by the post-α process.
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Proposition 1.3.7. Let {Xn}∞n=0 be a stochastic process and let α be a stopping

time. Then α ∈ Fα and Xα ∈ Fα.

Proof. For α to be Fα-measurable, we need to show that {α = k} ∈ Fα. This

follows from (1.3.4) by taking Λn = ∅ for n ̸= k and Λk = Ω.

That Xα ∈ Fα follows from

{ω : Xα(ω) ∈ B} =
∪
n

{ω : α(ω) = n, Xn(ω) ∈ B} ∈ Fα

for any Borel set B ∈ B. �

Theorem 1.3.8. Let {Xn}∞n=0 be a Markov-process and α is an a.e. finite

stopping time, then for each M ∈ F ′
α,

P (M |Fα) = P (M | α,Xα). (1.3.5)

We call this property the strong Markov-property.

Proof. Note that the generating sets of F ′
α are M =

∩l
j=1X

−1
α+j(Bj), Bj ∈ B.

Let Mn =
∩l

j=1X
−1
n+j(Bj) ∈ F(n,∞), We claim that

P (M | α,Xα) =
∞∑
n=1

P (Mn|Xn)χ{α=n}. (1.3.6)

Indeed if we consider P (Mn|Xn) = φn(Xn), then it is clear
∑∞

n=1 φn(Xn)χ{α=n}

is measurable with respect to the σ-field generated by α and Xα. By making

use of Theorem 1.3.5(b), we have∫
{α=m, Xα∈B}

∞∑
n=1

P (Mn|Xn)χ{α=n} dP =

∫
{α=m, Xm∈B}

P (Mm|Xm) dP

=

∫
{α=m, Xm∈B}

P (Mm|F[0,m]) dP

= P ({α = m, Xm ∈ B} ∩Mm)

= P ({α = m,Xα ∈ B} ∩M).
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(The last equality is due to Mm∩{α = m} =M ∩{α = m}). Hence the claim

follows.

Now to prove the theorem, let Λ ∈ Fα, Λ =
∪∞

n=0({α = n} ∩ Λn), then

P (Λ ∩M) =
∞∑
n=0

P ({α = n,Λn} ∩Mn)

=
∞∑
n=0

∫
{α=n}∩Λn

P (Mn|F[0,n]) dP

=
∞∑
n=0

∫
Λ

P (Mn|Xn)χ{α=n} dP (by Theorem 1.3.5(b))

=

∫
Λ

P (Mn| α,Xα) dP (by (1.3.6)).

The theorem follows from this. �

We remark that when α is the constant n, then we can omit the α in (1.3.5)

and it reduces to the Markov property as in Theorem 1.3.5. Also if the process

is homogeneous (i.e., invariant on the time n), then we can omit the α there.

It is because in (1.3.6), the right side can be represented as
∑∞

n=1 φ(Xn)χ{α=n}

(instead of φn(Xn)) which is Fα-measurable. In this case we can rewrite (1.3.5)

as

P (Xα+1 ∈ B|Fα) = P (Xα+1 ∈ B|Xα) ∀ B ∈ B,

a direct analog of the definition of Markov property.

There is a constructive way to obtain Markov processes. For a Markov

chain {Xn}∞n=0, we mean a stochastic process that has a state space S =

{a1, a2, · · · , aN} (finite or countable) and a transition matrix

P =


p11 · · · p1N
... · · · ...

pN1 · · · pNN


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where pij ≥ 0 and the row sum is 1; the pij is the probability from i to j.

Suppose the process starts at X0 with initial distribution µ = (µ1, · · · , µN),

let Xn denote the location of the chain at the n-th time according to the

transition matrix P , then {Xn}∞n=0 satisfies the Markov property:

P (Xn+1 = xn+1|X0 = x0, · · · , Xn = xn) = P (Xn+1 = xn+1|Xn = xn) = pij.

Also it follows that

P (X0 = x0, X1 = x1, · · · , Xn = xn)

= P (X0 = x0)P (X1 = x1|X0 = x0) · · ·P (Xn = xn|Xn−1 = xn−1)

= µx0px0x1 · · · pxn−1xn .

More generally, we consider the state space to be R. Let µ : R×B → [0, 1]

satisfies

(a) for each x, µ(x, ·) is a probability measure;

(b) for each B, µ(·, B) is a Borel measurable function.

Let {Xn}∞n=0 be a sequence of r.v. with finite dimensional joint distributions

µ(n) for X0, · · · , Xn given by

P (
n∩

j=0

{Xj ∈ Bj}) = µ(n)(B0 × · · · ×Bn)

:=

∫
· · ·

∫
B0×···×Bn

µ0(dx0)µ(x0, dx1) · · ·µ(xn−1, dxn).

where µ0 is the distribution function of X0.

It is direct to check from definition that

P (Xn+1 ∈ B|Xn) = µ(Xn, B),
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Figure 1.1:

i.e.,

P (Xn+1 ∈ B|Xn = x) = µ(x,B).

Hence µ(x,B) represents the probability that in the (n + 1)-step the chain is

in B, starting at x in the n-th step. To see that {Xn}∞n=0 satisfies the Markov

property, we let Λ =
∩n

j=0{Xj ∈ Bj}, then∫
Λ

P (Xn+1 ∈ B|Xn) dP =

∫
· · ·

∫
B0×···×Bn

µ(xn, B) dµ(n)(x0, · · · , xn)

=

∫
· · ·

∫
B0×···Bn×B

µ0(dx0)
n+1∏
j=1

µ(xj−1, dxj)

= P (Λ ∩ {Xn+1 ∈ B}).

This implies

P (Xn+1 ∈ B|Xn) = P (Xn+1 ∈ B|X1, · · · , Xn)

and the Markov property follows.

We call the above {Xn}∞n=0 a stationary (or homogeneous) Markov process

and µ(x,B) the transition probability.
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Exercises

1. Let {Xn}∞n=0 be a Markov process. Let f be a one-to-one Borel measurable

function on R and let Yn = f(Xn). Show that {Yn}∞n=0 is also a Markov process

(with respect to the fields generated by f(Xn)); but the conclusion does not

hold if we do not assume f is one-to-one.

2. Prove the strong Markov property in the form of Theorem 1.3.5(c).

3. If α1 and α2 are both stopping times, so are α1 ∧ α2, α1 ∨ α2 and α1 + α2.

However α1 − α2 is not necessary a stopping time.

4. Let {Xn}∞n=1 be a sequence of i.i.d.r.v. Let {αk}∞k=1 be a sequence of

strictly increasing finite stopping times. Then {Xαk+1}∞k=1 is also a sequence

of i.i.d.r.v. (This is the gambling-system theorem given by Doob).

5. A sequence {Xn}∞n=0 is a Markov chain of second order if

P (Xn+1 = j|X0 = i0, · · · , Xn = in) = P (Xn+1 = j|Xn−1 = in−1, Xn = in).

Show that nothing really new is involved because the sequence (Xn, Xn+1) is

a Markov chain.

6. Let µ(n)(x,B) be the n-step transition probability in the stationary Markov

process. Prove the Chapman-Kolmogorov equation

µ(m+n)(x,B) =

∫
R
µ(m)(x, dy)µ(n)(y,B) ∀ m,n ∈ N.
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1.4 Martingales

We first consider a simple example in analysis. Let f be an integrable function

on [0, 1], let Pn = {0 = 1
2n

≤ · · · ≤ k
2n

· · · ≤ 1} be a partition of [0, 1] and let

In,k = [ k
2n
, k+1

2n
). We define the average function fn of f on the partition Pn:

fn(x) =
2n−1∑
k=0

an,k χIn,k
, x ∈ In,k. (1.4.1)

where an,k = 1
|In,k|

∫
In,k

f(x)dx. Then {fn}n converges to f in L1. Moreover

{fn}n has the following consistency property: for m > n

fn(x) =
1

|In,k|

∫
In,k

fm(y)dy x ∈ In,k. (1.4.2)

This property has been reformulated by Doob in the more general probability

setting.

Definition 1.4.1. Let {(Xn,Fn)}∞n=1 be a sequence of r.v. such that Xn ∈ Fn.

It is called a martingale if

(a) Fn ⊂ Fn+1;

(b) E(|Xn|) <∞;

(c) Xn = E(Xn+1|F).

It is called a supermartingale (or submartingale) if ≥ (or ≤ respectively) in

(c) holds. We will call {Xn}n a s-martingale if it is any one of the three cases.

Condition (c) can be strengthened as Xn = E(Xm|Fn) for m > n. It

follows from

E(Xm|Fn) = E(E(Xm|Fm−1)|Fn) = E(Xm−1|Fn) = · · · = E(Xn|Fn) = Xn .

Martingale has its intuitive background in gambling. If Xn is interpreted

as the gambler’s capital at time n, then the defining property says that his
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expected capital after next game, played with the knowledge of the entire

past and present, is exactly equal to his current capital. In other words, his

expected gain is zero, and is in this sense the game is said to be “fair”. The

supermartingale and submartingale can be interpreted similarly.

Example 1. As a direct analog of the above function case, we let X be an

integrable r.v. and let {Fn}∞n=1 be an increasing sequence of sub-σ-fields (e.g.,

take Fn to be a partition). Let Xn = E(X|Fn). Then {Xn}∞n=1 is a martingale.

Indeed we see that

E(|Xn|) = E(|E(X|Fn)|) ≤ E(E(|X||Fn)) = E(|X|) <∞

and (b) follows. For (c), we observe that

E(Xn+1|Fn) = E(E(X|Fn+1)|Fn) = E(X|Fn) = Xn.

Example 2. Let {Xn}∞n=1 be a sequence of independent integrable r.v. with

mean zero. Let Sn =
∑n

j=1Xn and Fn = F(X1, · · · , Xn). Then

E(Sn+1|Fn) = E(Sn +Xn+1|Fn)

= Sn + E(Xn+1|Fn)

= Sn + E(Xn+1)

= Sn.

Hence {(Sn,Fn)} is a martingale.

Proposition 1.4.2. If {(Xn,Fn)}∞n=1 is a submartingale, and φ is increas-

ing and convex in R. If {φ(Xn)} is integrable, then {(φ(Xn),Fn)} is also a

submartingale.

Proof. Since Xn ≤ E(Xn+1|Fn), by the property of φ, we have

φ(Xn) ≤ φ(E(Xn+1|Fn)) ≤ E(φ(Xn+1)|Fn) �
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It follows that if {Xn}∞n=0 is a martingale (or submartingale), then {|Xn|p}∞n=0, p ≥

1 (provided that Xn ∈ Lp) and {X+
n }∞n=0 are submartingales. Also if {Xn} is

a supermartingale, so does {Xn ∧ a}n for any a ∈ R.

Theorem 1.4.3. (Doob’s decomposition Theorem) For any submartingale

{(Xn,Fn)}∞n=1, Xn can be decomposed as

Xn = Yn + Zn

where {(Yn,Fn)}∞n=1 is a martingale and {Zn} is a non-negative increasing

process.

Proof. We define the difference r.v.

D1 = X1, Dj = Xj −Xj−1, j ≥ 2.

Then Xn =
∑n

j=1Dj, and the defining relation of submartingale yields

E(Dj|Fj−1) ≥ 0, j ≥ 2. (1.4.3)

We consider yet another difference

S1 = D1, Sj = Dj − E(Dj|Fj−1),

and let

Yn =
n∑

j=1

Sj, Zn =
n∑

j=1

E(Dj|Fj−1).

It is clear that Xn = Yn +Zn, X1 = Y1, Z1 = 0 and {Zn}∞n=1 is a non-negative

increasing process (by (1.4.3)). On the other hand, note that E(Sj|Fj−1) = 0,

it follows that

E(Yn|Fn−1) =
n−1∑
j=1

Sj = Yn−1

and hence a martingale. �
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For an increasing family of sub-σ-fields {Fn}∞n=1, let F∞ =
∪∞

n=1Fn and

let α be a stoping time with respect to {Fn}∞n=1, i.e.,

α : Ω → N ∪ {∞} such that {α = n} ∈ Fn

As in last section, the pre-α field Fα is the family of sets

Λ =
∪
n

({α = n} ∩ Λn), Λn ∈ Fn.

The following theorems aim at replacing the constant time of a martingale by

a stoping time.

Theorem 1.4.4. Let Y be integrable r.v. and let Xn = E(Y |Fn) where Fn is

an increasing family of sub-σ-fields (it is a martingale). Then for any stopping

time α, we have Xα = E(Y |Fα).

Moreover if β is also a stopping time and α ≤ β, then {(Xα,Fα), (Xβ,Fβ)}

is a two term martingale (i.e., Xα = E(Xβ|Fα)).

Proof. Note that Xα ∈ Fα. We claim that it is also integrable. Indeed as

|Xn| = |E(Y |Fn)| ≤ E(|Y ||Fn),

we have∫
Ω

|Xα|dP =
∑
n

∫
{α=n}

|Xn|dP ≤
∑
n

∫
{α=n}

|Y |dP =

∫
Ω

|Y |dP <∞.

Now if Λ ∈ Fα, let Λn = Λ ∩ {α = n}, then∫
Λ

XαdP =
∑
n

∫
Λn

XndP =
∑
n

∫
Λn

Y dP =

∫
Λ

Y dP .

Hence Xα = E(Y |Fα) .

For the last statement, note that Fα ⊂ Fβ, hence

E(Xβ|Fα) = E(E(Y |Fβ)|Fα) = Xα. �
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Corollary 1.4.5. Under the above assumption and suppose {αi}∞i=1 is an in-

creasing sequence of stopping times. If {(Xn,Fn)}n is an s-martingale, then

{(Xαi
,Fαi

)}i is an s-martingale.

Unlike Theorem 1.4.4, in the following theorem, we do not assume that the

{Xn} is the conditional expectation of an integrable Y .

Theorem 1.4.6. Let {(Xn,Fn)}n be a s-martingale. Let α ≤ β be two bounded

stopping times, then {(Xα,Fα), (Xβ,Fβ)} is also an s-martingale (of the same

type).

Proof. We prove the theorem for supermartingale. For submartigale, we

consider {−Xn} instead.

Let Λ ∈ Fα, and let Λj = Λ ∩ {α = j} (∈ Fj). Then for k ≥ j, Λj ∩ {β >

k} ∈ Fk, hence∫
Λj∩{β≥k}

XkdP =

∫
Λj∩{β>k}

XkdP +

∫
Λj∩{β=k}

XkdP

≥
∫
Λj∩{β>k}

Xk+1dP +

∫
Λj∩{β=k}

XkdP

i.e., ∫
Λj∩{β≥k}

XkdP −
∫
Λj∩{β≥k+1}

Xk+1dP ≥
∫
Λj∩{β=k}

XβdP

Summing over k, j ≤ k ≤ m, where m is the upper bound of β, then∫
Λj∩{β≥j}

XαdP −
∫
Λj∩{β≥m+1}

Xm+1dP ≥
∫
Λj∩{j≤β≤m}

XβdP

Hence ∫
Λj

XαdP ≥
∫
Λj

XβdP

Summing over 1 ≤ j ≤ m,we have∫
Λ

XαdP ≥
∫
Λ

XβdP ∀ Λ ∈ Fα. �
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Corollary 1.4.7. If {(Xn,Fn)} is a martingale or a supermartingale, then

the same is for {(Xα∧n,Fα∧n)} for any stopping time α.

The theorem still holds if α, β are unbounded. For this we need to associate

a random variable X∞ at ∞.

Theorem 1.4.8. Assume limn→∞Xn = X∞ exists and is integrable. Let α, β

be two arbitrary stopping times. Then Theorem 1.4.6 still hold if {(Xn,Fn)}n∈N∞

is a supermartingale.

Proof. We first assume thatXn ≥ 0 andX∞ = 0. ThenXα ≤ lim infn→∞Xα∧n,

and hence Xα is integrable by Fatou’s lemma. The same is for Xβ.

From the proof of Theorem 1.4.6, we can conclude that for any m∫
Λ∩{α=j}

XαdP ≥
∫
Λ∩{α=j}∩{β≤m}

XβdP .

By letting m→ ∞ and summing over all j, we have∫
Λ∩{α<∞}

XαdP ≥
∫
Λ∩{β<∞}

XβdP .

In addition we have Xα = X∞ = 0 on {α = ∞}, and Xβ = X∞ = 0 on

{β = ∞}, We conclude that∫
Λ

XαdP =

∫
Λ

XβdP

and hence {(Xα,Fα), (Xβ,Fβ)} is a supermartingale.

For the general case we let

X ′
n = E(X∞|Fn), X ′′

n = Xn −X ′
n.

Then {X ′
n} is a martingale, and Xn ≥ X ′

n by the defining property of super-

martingale apply to Xn and X∞. We can apply the above proved case to X ′′
n,

and conclude that {Xn} is a supermartingale. �
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The above theorems are referred as Doob’s optional sampling theorems. In

terms of gambling, one would hope to devise a strategy to gain advantage of

the outcome, but the theorems say that such a strategy does not exist, at least

mathematically. The reader can refer to [1, p.327](and the exercises there) for

a discussion of the gambler’s ruin problem.

We use the above stopping time consideration to prove a useful inequality

for sub-martingales.

Theorem 1.4.9. If {(Xj,Fj)}nj=1 is a submartingale, then for any real λ, we

have

λ P ( max
1≤j≤n

Xj > λ) ≤
∫
{max1≤j≤n Xj>λ}

XndP ≤ E(X+
n ).

Proof. Let α be the first j such that Xj ≥ λ if such 1 ≤ j ≤ n exists,

otherwise let α = n. It is clear that α is a stopping time, and hence {Xα, Xn}

is a submartingale (Theorem 1.4.6). If we write

M = {max
1≤j≤n

Xj ≥ λ},

then M ∈ Fα and Xα ≥ λ on M , hence the first inequality follows from

λP (M) ≤
∫
M

XαdP ≤
∫
M

XndP.

The second inequality is clear. �.

Corollary 1.4.10. If {(Xn,Fn)}∞n=1 is a martingale, then for any λ > 0, we

have

P ( max
1≤j≤n

|Xj| > λ) ≤
∫
{max1≤j≤n |Xj |>λ}

|Xn|dP ≤ 1

λ
E(|Xn|) .

In addition if E(|Xn|2) <∞, then we also have

P ( max
1≤j≤n

|Xj| > λ) ≤ 1

λ2
E(|Xn|2) .
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For a sequence of independent r.v. {Xn}∞n=0 with zero mean and finite

variance, we let Sn =
∑n

j=1Xj. It is well known (Kolmogorov’s inequality [1,

p. 116]) that for any λ > 0,

P ( max
1≤j≤n

|Sj| > λ) ≤ 1

λ2
E(|Sn|2).

We see that the inequality follows directly from the above corollary.

To conclude this section, we prove a deep theorem on the convergence of

the {Xn}n, which is also due to Doob. It involves an ingenious method in the

proof.

Theorem 1.4.11. If {(Xn,Fn)}∞n=0 is an L1-bounded submartingale, then

{Xn}∞n=0 converges a.e. to a finite limit.

Proof. First we define, for any pair of rationals a, b, let

Λ[a,b] = {ω : lim inf
n→∞

Xn(ω) < a < b < lim sup
n→∞

Xn(ω)} (1.4.4)

We show that Λ[a,b] is a zero set for any a, b ∈ Q. It follows that

{ω : lim inf
n→∞

Xn(ω) < lim sup
n→∞

Xn(ω)} =
∪

a,b∈Q, a<b

Λ[a,b]

is a zero set. Note that lim infn→∞Xn is finite almost everywhere (by Fatou

lemma and the L1-boundedness assumption, E(lim inf |Xn|) ≤ lim inf E(|Xn|) <

∞), hence the theorem follows.

It remains to prove (1.4.4). We first introduce some notations. Let {x1, · · · , xn}

be a numerical sequence, for a < b, let

α1 = min{j : 1 ≤ j ≤ n, xj ≤ a},

α2 = min{j : α1 < j ≤ n, xj ≥ b}.
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Inductively we define

α2k−1 = min{j : α2k−2 < j ≤ n, xj ≤ a},

α2k = min{j : α2k−1 < j ≤ n, xj ≥ b}.

Let αl be the last one defined. We can think of connecting the consecutive xi

by line segments, Let ν be the number of times the line segments comes from

≤ a to ≥ b, i.e., the number of upcrossing through the interval [a, b], it is seen

that ν = [l/2].

Figure 1.2:

Lemma 1.4.12. Let {(Xj,Fj)}nj=1 be a submartingale and assume that Xj ≥

0. Let ν
(n)
[0,b] be the r.v. of the number of upcrossing of [0, b] by the sample

sequence {Xj(ω) : 1 ≤ j ≤ n}. Then

E(ν
(n)
[0,b]) ≤ E(Xn −X1)

b
.

Proof. For convenience, we let α0 = 1 and αl+1 = αl+2 = · · · = αn = n. Then

we have a sequence of stopping times with

1 = α0 ≤ α1 < · · · < αl ≤ αl+1 · · · ≤ αn = n.

We write

Xn −X1 = Xαn −Xα0 =
n−1∑
j=1

(Xαj+1
−Xαj

) =
( ∑
j odd

+
∑
j even

)
(Xαj+1

−Xαj
).
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It follows that∑
j odd

(
Xαj+1

(ω)−Xαj
(ω)

)
≥ [l(ω)/2] · b = ν

(n)
[0,b](ω) · b.

On the other hand by Theorem 1.4.6, {Xαj
: 0 ≤ j ≤ n} is a submartingale,

so that for each 0 ≤ j ≤ n− 1, E(Xαj+1
−Xαj

) ≥ 0. Consequently

E(
∑
j even

(Xαj+1
−Xαj

)) ≥ 0.

Therefore E(Xn −X1) ≥ E(v
(n)
[0,b]) · b which yields the lemma. �.

Now to complete the proof of (1.4.4), we consider the upcrossing on any

[a,b]. We replace the r.v. in the lemma by (Xn − a)+. The sequence {(Xn −

a)+}n is still submartingale and by the lemma,

E(ν
(n)
[a,b]) ≤

E(Xn − a)+ − E(X1 − a)+

b− a
≤ E(Xn

+) + |a|
b− a

.

Let ν[a,b] = lim
n→∞

ν
(n)
[a,b]. The L1-boundedness of {Xn}n implies that E(ν[a,b]) <

∞. Hence ν[a,b] is finite with probability 1. Note that

Λ[a,b] = {ω : lim inf
n→∞

Xn(ω) ≤ a < b ≤ lim sup
n→∞

Xn(ω)}

⊆ {ω : ν[a,b](ω) = ∞},

hence Λ[a,b] is a zero set and (1.4.4) follows. This completes the proof of the

theorem. �

Corollary 1.4.13. Every uniformly bounded s-martingale converges a.e. Also

every positive supermartingale and every negative submartingale converges a.e.

Proof. The first statement follows directly from Theorem 1.4.8 and that {Xn}

is a submartingale if and only {−Xn} is a supermartingale.

For the second part we use Doob’s decomposition theorem (Theorem 1.4.3.

Let {Xn}n be a positive supermartingale, then Xn = Yn − Zn where {Yn} is a
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martingale and Zn ≥ 0, {Zn} ↗. Since Xn ≥ 0, it follows that 0 ≤ Zn ≤ Yn.

Let Z∞ = limn→∞ Zn. It is finite a.e. because

E(Z∞) = lim
n→∞

E(Zn) ≤ E(Y1) <∞.

Also since {Xn}n is a supermartingale,

E(Yn) = E(Xn) + E(Zn) ≤ E(X1) + E(Z∞).

This implies {Yn}n is L1-uniformly bounded and {Yn}n converges to a finite

limit a.e. (Theorem 1.4.8). The same holds for {Xn}n. �

Recall that a sequence of r.v. {Xn}∞n=1 is called uniformly integrable if

lim
k→∞

∫
|Xn|≥k

|Xn|dP = 0 uniformly on n .

It is clear that it implies that {Xn}∞n=1 is L1- bounded. Also, if Xn → X a.e.,

then the uniformly boundedness implies that Xn → X in L1 ([1, p.96-97]).

Corollary 1.4.14. If {(Xn,Fn)}∞n=1 is a submartingale and is uniformly in-

tegrable, then X∞ = limn→∞Xn a.e. and in L1.

Remark. Theorem 1.4.11 and Corollary 1.4.14 are more or less that the con-

verse of Example 1. However for Example 2, the sum {Sn}∞n=1 of i.i.d.r.v.

{Xn}∞n=0 with zero mean forms a martingale, but does not converge; it is be-

cause the L1-bounded condition is not satisfies. In fact, we can show that

lim
n→∞

E
( |Sn|√

n

)
=

√
2

π
σ

where σ is the variance of Xn. For more detail, the reader can refer to [1,

Chapter 5, 6] for the law of large number and the central limit theorem for

{Sn}∞n=1.
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Exercises

1. Suppose {(X(k)
n ,Fn)}n, k = 1, 2 are two martingales, α is a finite stopping

time and X
(1)
α = X

(2)
α . Define Xn = X

(1)
n χ{n≤α} + X

(2)
n χ{n≤α}. Show that

{(Xn,Fn)}n is a martingale.

2 If {(Xn,Fn)}n, {(Yn,Fn}n are martingales, then {(Xn + Yn,Fn)} is again a

martingale. However it may happen that {Xn}n, {Yn}n are martingales, but

{Xn + Yn}n is not a martingale. (Note the the σ-field generated by Xn + Yn

may not have the same σ-field Fn.)

3 Prove that for any L1-bounded s-martingale {(Xn,Fn)}n, and for any α

stopping time, then E(|Xα|) <∞.

4. If X is an integrable r.v., then the collection of r.v., D(X|G) with G ranging

over all Borel subfields of F , is uniformly integrable.

5. Find an example of a positive martingale that is not uniformly integrable.

6. Find an example of a martingale {Xn}n such that Xn → −∞. This implies

that in a fair game one player may lose an arbitrary large amount if he stays on

long enough. (Hint: Try sums of independent but not identically distributed

r.v. with mean 0.)

7. If {Xn}n is a uniformly integrable submartingale, then for any stopping

time α, {Xα∧n}n is again a uniformly integrable submartingale and

E(X1) ≤ E(Xα) ≤ sup
n
E(Xn).

8 Prove that for any s-martingale, we have for each λ > 0,

λP (sup
n

|Xn| ≥ λ) ≤ 3 sup
n
E(|Xn|) .
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For a martingale or a positive or nonnegative s-martingale the constant 3 may

be replaced by 1.

9. Let {Xn}n be a positive supermartingale. Then for almost every ω, Xk(ω) =

0 implies Xn(ω) = 0 for all n ≥ k.

10. Every L1-martingale is the difference of two positive L1-bounded martin-

gales. (Hint, take one of them to be limk→∞E(X+
k |Fn)).

11. If {Xn} is a martingale or positive submartingale such that supnE(X
2
n) ≤

∞, then {Xn}n converges in L2 as well as a.e.

12. Show that if {(Xn,Fn)}n is a submartingate, Xn ≥ 0, then for p > 1,

|| max
{1≤k≤n}

||p ≤ p

p− 1
||Xn||p .

(Hint: Show that for Y ≥ 0, E(Y p) = p
∫∞
0
λp−1P (Y ≥ λ)dλ.)
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Chapter 2

Brownian Motion

2.1 Continuous time stochastic processes

We call a family of random variables {Xt}t≥0 on (Ω,F , P ) a continuous time

stochastic process. For each ω ∈ Ω, X(·, ω) = X(·)(ω) is called a sample path.

Usually we treat X(·, ω) = ω(t) (this can be justified).

There are two most important classes of continuous time stochastic pro-

cesses. The first one is the Poisson process {Nt}t≥0, the number of arrivals

in time [0, t] according to an arrival rate λ per unit time.

Figure 2.1:

45
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Recall that a Poisson random variable X with rate λ has distribution

P (X = k) = e−λλ
k

k!
, k = 0, 1, 2 · · ·

Hence Nt has distribution

P (Nt = k) = e−λt (λt)
k

k!
, k = 0, 1, 2 · · ·

A Poisson process is characterized by

1. N0 = 0;

2. Independent increment: for 0 < t1 < t2 < · · · < tn,

Nt1 , Nt2 −Nt1 , Nt3 −Nt2 , · · · , Ntn −Ntn−1

are independent.

3. Poisson increment: for t > s, Nt − Ns ∼ N(t−s), i.e., it has a Poisson

distribution with rate λ(t− s).

The next one is the Brownian motion {Bt}t≥0. It is also called a Wiener

process due to the pioneer work of Wiener in the 20’s. Recall that a one

dimension normal distribution N(µ, σ2) has density function

1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R

and N(0, 1) is called the standard normal distribution. The Brownian motion

is defined by

1. B0 = 0;

2. Independent increment: for 0 < t1 < t2 < · · · < tn,

Bt1 , Bt2 −Bt1 , Bt3 −Bt2 , · · · , Btn −Btn−1

are independent;
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Figure 2.2:

3. Normal increment: for t > s, Bt−Bs, has normal distribution N(0, t−s).

We will see in the next section that almost all sample paths are continuous,

but not differentiable anywhere. We can also define in the same way the higher

dimensional Brownian motion, i.e., {Bt}t≥0 has range in R
d; the corresponding

density function in (3) is

1

(2π(t− s))d/2
e−

|x|2
2(t−s) , x ∈ Rd.

The Brownian motion was first formulated by Einstein to study diffusion.

Heuristically we can realize it as the following: it is direct to check that

p(t, x) = (2πt)−
d
2 e−|x|2/2t satisfies

∂p(t, x)

∂t
=

1

2
∆p(t, x)

where ∆ =
∑d

i=1
∂2

∂x2 is the Laplacian. Hence it satisfies the heat equation

∂u

∂t
=

1

2
∆u on Rd.

If we are given an initial condition u(x, 0) = f(x), it is known that the solution

is given by

u(x, t) =

∫
Rd

f(y)p(t, x− y)dy = (f ∗ pt)(x) = Ex(f(Bt)).
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Equivalently, we can put it in terms of the Brownian motion u(x, t) = E(f(x−

Bt)). The study of heat equation can be put entirely into a probabilistic

setting.

In view of the two definitions above, there is another more general type

of stochastic processes called Lévy processes. They are {Xt}t≥0 defined by

replacing (3) with a stationary increment condition, i.e., for t > s, Xt − Xs

has the same distribution as X(t−s). The reader can refer to [Ito, Stochastic

Process, Springer, 2004] for detail.

In the following we outline the theoretical existence of a probability space

(Ω,F , P ) for a stochastic process {Xt}t≥0, and the measurability problem

arised. The space and the σ-field are constructed by the family of finite di-

mensional distributions as for the discrete time case {Xn}∞n=1.

Let T = [0,∞) and let RT denote all functions ω : T → R. For t1 < · · · <

tn, the n-variate r.v. (Xt1 , · · · , Xtn) induces a distribution µt1···tn on Rd. Let

F be the σ-field generated by (Xt1 , · · · , Xtn), i.e., by sets (cylinder sets) of the

form

Et1···tn = {ω : ω(ti) ∈ Ei} with Ei Borel sets, 0 ≤ t1 · ·· < tn.

If the family {µt1···tn}t1<···<tn satisfies the consistency condition:

µt1···ti−1ti+1···tn = µt1...tn ◦ φ−1
i

where φi : Rn → Rn−1, (x1 . . . xn) → (x1 . . . xi−1, xi+1 . . . xn) is the projec-

tion map ( µt1...ti−1ti+1...tn is the marginal distribution of µt1...tn), then by the

Kolmogorov extension theorem, there exists a probability P on (Ω,F) and

{Xt}t≥0 is the stochastic process with respect to (Ω,F , P ).

The probability space defined in this way is, however, still needed to be

refined. One of the problems we often encounter is the measurability of union
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of uncountably many sets with indices from T = [0,∞). Another problem is

that the σ-field F thus defined does not impose any condition on the continuity

of the sample paths on [0,∞) as is seen in the following example.

Example. Consider (Ω,F , P ) on which there is a continuous random variable

τ with values in [0, T ) (i.e., P (τ = t) = 0 for all t ≥ 0). Define Xt(ω) ≡ 0 for

all t ≥ 0, and

Yt(ω) =

 1 if τ(ω) = t

0 if τ(ω) ̸= t

Then the only sample path of X(·, ω) is 0, but each sample path of Y (·, ω) has

a jump at τ(ω) = t. On the other hand, it follows from the assumption on τ

that P (Yt = 1) = P (τ = t) = 0 for each t, hence P (Xt = Yt) = 1 for each t.

Therefore {Xt}t≥0, {Yt}t≥0 have the same finite dimensional distribution, they

equals the point mass with probability 1 at the path ω ≡ 0.

We will resolve the problem as follows:

Definition 2.1.1. Two stochastic processes {Xt}t>0, {Yt}t≥0 on (Ω,F , P ) is

called a version of each other if P (Xt = Yt) = 1 for all t ≥ 0.

Note that if we let Nt = {Xt ̸= Yt}, they are zero set with respect to P .

We would like to have
∪

t≥0Nt to be a zero set, however, it is not necessary

measurable from the construction of probability space. We will use the fol-

lowing theoretical device to overcome this dilemma. Let D be a countable

subset of T = [0,∞), a function x : T → R is called separable if for any t ∈ T ,

there exists a sequence {tn} ⊆ D, tn → t and x(tn) → x(t). For example

continuous functions or right continuous functions are separable with respect

to the rationals.

Definition 2.1.2. A stochastic process {Xt}t≥0 on (Ω,F , P ) is separable with

respect to D if there exists an F-null set N such that X(·, ω) is separable with
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respect to D for all ω /∈ N .

The process {Yt}t≥0 in the Example is not separable. For if otherwise let

D be a countable set in the definition. For any t̃ /∈ D, let ω be such that

τ(ω) = t̃, then Y (t̃, ω) = 1 and Y (t, ω) = 0 for all t ̸= t̃. Hence for {tn} ⊆ D

and tn → t, Y (tn, ω) 9 Y (t̃, ω).

The following is the main theorem

Theorem 2.1.3. . Let {Xt}t≥0 be a process on (Ω,F , P ), then there exists

on the same space a separable process {X ′
t}t>0 such that P (X

′
t = Xt) = 1 for

every t > 0.

Sketch of proof ([2, p.555-559]). Note that for any fixed t and for any countable

set D(⊂ [0, T )), the set of ω for which X(·, ω) is separable with respect to D

at t can be written as
∞∩
n=1

∪
|s−t|< 1

n
s∈D

{ω : |X(s, ω)−X(t, ω)| < 1

n
}.

The main task is to construct D (independent of t) so the above set has

probability 1. To prove this, we take any interval I ⊆ T and J ⊆ R, and let

p(C) = P (
∩
s∈C

(Xs /∈ J))

for any countable set C ⊂ I. Observe that as C increases, p(C) decreases. we

can choose Cn such that p(Cn) → infC p(C), and let U(I,J) =
∪

nCn. Then

P
(
{Xt ∈ J} ∩

∩
s∈CI,J

(Xs /∈ J)
)
= 0

(otherwise, we consider CI,J∪{t} and obtain a contradiction). LetD =
∪
C(I,J)

where (I, J) runs through all intervals I and J with rational end points. If we

let

N(t) =
∪
I,J

(
{Xt ∈ J} ∩

∩
s∈CI,J

(Xs /∈ J)
)
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Then we have P (N(t)) = 0. It is direct to check that D has the property we

want. Now we define the separable version of {Xt}t≥0 as

X ′(t, ω) =

 X(t, ω) if t ∈ D or t ∈ D & ω /∈ N(t),

lim supn→∞X(sn(t), ω) if t /∈ D and ω ∈ N(t)

where sn(t) is a fixed sequence converges to t. It follows that for each t, and

for ω ̸∈ N(t), X ′(·, ω) is separable with respect to D at t. �

We introduce the following definitions on a probability space (Ω,F , P ):

− a family F = {Ft}t≥0 of sub-σ-fields in F is called a filtration if {Ft} is an

increasing sequence of σ−fields on t;

− a process {Xt}t≥0 is said to be adaptable to F if Xt ∈ Ft for each t > 0;

− a filtration F is called right continuous if Ft+ = Ft (by definiton Ft+ =∩
s>tFs).

For any filtration {Ft}, let Gt = Ft+, then G = {Gt}t≥0 is right continuous.

It is clear that if {Xt}t≥0 is adaptable to F, then it is also adaptable to G. For

reasons that will be obvious later, we assume without loss of generality that F

is right continuous. It is also convenient to enlarge F0 (hence all Ft) to include

all subsets of the zero sets (completion by null sets).

With the filtration F, we can define the necessary terminologies as before:

− Markov property: P (Xt+s ∈ E | Ft) = P (Xt+s ∈ E | Xt) for t, s > 0;

− Martingale: Xs = E(Xt | Fs) for t > s;

− Stopping time α : Ω → [0,∞) such that {τ ≤ t} ∈ Ft.
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Exercises

1. Let ξ : Ω → [0,∞) be a random variable which satisfies

P (ξ ≥ t+ s | ξ ≥ s) ∀ t, s ≥ 0

(lack of memory property). Show that this property is equivalent to ξ being

an exponential distribution, i.e., P (ξ ≥ t) = e−λt, t > 0, the waiting time with

arrival rate λ.

2. Let X(t) be a Poisson process, let Si = inf{t > 0 : X(t) = n} and let

ξn = Sn−Sn−1 be the waiting time of the interarrivals. Show that the {ξn}∞n=1

are i.i.d. exponential random variables.

3. Conversely, let {ξn}∞n=1 be i.i.d. exponential random variables. Let τn =

ξ1 + · · ·+ ξn, and let

X(t) = max{n : τn ≤ t}, t > 0 .

Show that X(t) is a Poisson process. (This is an alternative way to define a

Poisson process.) Use the picture of a sample path to realize τn and X(t) are

“inverse” of each other (like the inverse function).

4. Show that if X is measurable in the sub-σ-field σ{Xt : t ∈ T}, then X is

measurable in σ{Xt : t ∈ S} for some countable subset S ⊂ T .

5. Let {Xt}t≥0 be a stochastic process on (Ω,F , P ) and A ∈ F . Show that

there is a countable set S ⊂ T such that P (A | Xt, t ∈ T ) = P (A | Xt, t ∈ S).

6. Let K(s, t) be a real function over T × T . Suppose that K is symmetric

and nonnegative definite on T . Show that there is a process {Xt}t≥0 for which

(Xt1 , · · · , Xtn) has the central (zero mean) normal distribution with covariance

cov(Xti , Xtj) = K(ti, tj), i, j = 1, · · · , k .
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2.2 Brownian motion and sample paths

For a normal r.v. X ∼ N(0, σ2), the symmetry implies E(X2k+1) = 0, and the

integration by parts yields

E(X2k) = 1 · 3 · 5 · · · (2k − 1) · σ2k . (2.2.1)

We also need the following elementary properties of the normal r.v.’s :

− Suppose X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2), and they are independent, then

X1 +X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

− Suppose X = (X1, · · · , Xn) is a n-variate normal r.v. with distribution

N(µ,Σ) where Σ is a symmetric, positive definite n× n-matrix. The density

function is given by

f(x) =
1

(2π)
n
2 (detΣ)

1
2

exp
(
− 1

2
(x− µ)tΣ−1(x− µ)

)
.

By a direct calculation, we have Σ = [cov(Xi, Xj)] where cov(Xi, Xj) =

E((Xi − µi)(Xj − µj)).

− Suppose X ∼ N(µ,Σ). Let Y = AX + c where A is non-singular, then

by a change of variable, Y has density g(y) = | detA|−1f(A−1y− c). A direct

substitution yields Y ∼ N(Aµ+ c, Σ′) where Σ′ = AΣAt.

Let {Bt}t≥0 be the Brownian motion defined as in Section 2.1, then the

process is stationary in the sense that the distribution Bt − Bs depends only

on the difference t− s. Since Bt has distribution N(0, t), it follows that

E(Bt) = 0 , E(B2
t ) = t.

Moreover, by using independence, we have

E(BsBt) = min(s, t) (2.2.2)
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This can be checked directly: assume s < t, then

E(BsBt) = E
(
Bs(Bs + (Bt −Bs))

)
= E(B2

s ) + E(
(
Bs(Bt −Bs)

)
= E(B2

s ) + E(Bs)E(Bt −Bs) = s.

For 0 < t1 < t2 · · · < tn, the joint distribution of (Bt1 , Bt2 − Bt1 , · · · , Btn −

Btn−1) is given by

ft1···tn(x1, · · · , xn) =
n∏

i=0

1√
2π(ti − ti−1)

exp
(
− (xi − xi−1)

2

2(ti − ti−1)

)
=

1√
2π(detΣ)1/2

exp
(
− 1

2
(ztΣ−1z)

)
where z = (x1, x2 − x1, · · · , xn − xn−1) and

Σ =


t1 0 · · · 0

0 t2 − t1 · · · 0
...

...
...

...

0 0 · · · tn − t1

 .

On the other hand the distribution of the n−variate random vector (Bt1 , Bt2 , · · ·Btn)

is given by

gt1,··· ,tn(x) =
1√

2π(detΣ′)1/2
exp

(
− 1

2
(xtΣ′−1

x)
)

(2.2.3)

where

Σ
′
=



t1 t1 t1 · · · t1

t1 t2 t2 · · · t2

t1 t2 t3 · · · t3
...

...
...

...
...

t1 t2 t3 · · · tn


.

This follows from the transformation of the above multivariate normal random
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vector : 
Bt1

Bt2

...

Btn

 =


1 0 0 · · · 0

1 1 0 · · · 0
...

...
...

1 1 1 · · · 1




Bt1

Bt2 −Bt1

...

Btn −Btn−1


and notice that cov(Bti , Btj) = min{ti, tj}. By using this and the construction

of the probability space in the last section, we can conclude the existence of a

probability space for the Brownian motion.

One of the main properties of the Brownian motion is the continuity of the

sample paths.

Theorem 2.2.1. Let {Bt}t≥0 be a Brownian motion, then there is a version

such that with probability 1, the sample paths B(·, ω) are continuous.

Proof. Let D denote the set of dyadic rationals in [0,∞) and let In,k =

[ k
2n
, k+1

2n
) be the dyadic intervals. Let

En =
{
ω : max

0≤k≤n2n

(
sup

r∈In,k∩D
|B(r, ω)−B(

k

2n
, ω)|

)
>

1

n
)
}
.

We divide the proof into three steps.

(i) We claim that
∑∞

n=1 P (En) <∞. This will be proved in Lemma 2.2.5.

(ii) It follows from (i) and the Borel-Cantelli lemma that

E = lim
n→∞

En =
∞∩
l=1

∞∪
n=l

En

is a zero set. Observe that for any ω /∈ E there exists ℓ such that for all

n ≥ ℓ, ω /∈ En. It follows that for any ϵ > 0 and t ∈ [0,∞), we can find

n0 > max{ℓ, t} and 1/n0 < ϵ/3, such that for any n > n0, we have (by

ω /∈ En),

|B(r, ω)−B(
k

2n
, ω)| ≤ 1

n
, ∀ r ∈ In,k ∩D, 0 ≤ k

2n
≤ n .
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This implies that

|B(r, ω)−B(r′, ω)| ≤ ε, ∀ r, r′ ∈ [0, t] ∩D, |r − r′| ≤ 1

2n
.

We conclude from this that if ω /∈ E, then B(·, ω) is uniformly continuous on

the dyadic rationals, and hence B(·, ω) has a continuous extension B′(·, ω) on

[0,∞),

B′
t(ω) = B′(t, ω) =

 lim
r→t

B(r, ω) if ω /∈ E

0 if ω ∈ E

where the r’s are the dyadic rationals decrease to t.

(iii) Next we observe that the joint distribution of (Bt1 , · · · , Btk) is the limit

of the distributions of {Br1(n), · · · , Brk(n)}∞n=1, where the rj(n)’s are rationals

and rj(n) ↘ tj. (check this by the density functions (2.2.3)). Also note that

(B′
t1
, · · · , B′

tk
) also has the same distribution (see the following Lemma 2.2.2).

Therefore {Bt}t and {B′
t}t have the same finite dimensional distributions in

the same probability space. In view of P (Bt ̸= B′
t) = P (E) = 0 for each t ≥ 0,

we conclude that {B′
t}t is a continuous version of {Bt}t. �

The following simple lemma is needed in (iii).

Lemma 2.2.2. Let {Xn}n and X be k-dimensional r.v. Suppose Xn → X in

probability, and Fn(x) → F (x) for all x, then F is the distribution function of

X.

Proof. We only prove the 1-dimensional case for simplicity. Let FX be the

distribution function of X. Since Xn → X in probability, for ϵ > 0, there

exists n such that for k > n, P (|Xk −X| ≥ ϵ) ≤ ϵ. Hence for k > n,

P (Xk ≤ x) ≤ P (X ≤ x+ ϵ) + P (|Xk −X| ≥ ϵ)

≤ P (X ≤ x+ ϵ) + ϵ .
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It follows that limnFn(x) ≤ FX(x). By considering P (Xk > x+h), we can use

similar technique to show that for h > 0, FX(x) ≤ limnFn(x+ h). Putting the

two inequalities together,

F (x) = limnFn(x) ≤ FX(x) ≤ limnFn(x+ h) = F (x+ h)

Therefore FX(x) = F (x) follow by taking h→ 0. �

Finally we prove
∑∞

n=1 P (Bn) <∞ in (i), which will complete the proof of

Theorem 2.2.1. We need a technical lemma.

Lemma 2.2.3. Suppose X1, ..., Xn are independent r.v. and are symmetric

about 0. Let Sn = X1 + ...+Xn. Then for α > 0 and ϵ > 0,

(i) P
(
maxk≤n Sk ≥ α

)
≤ 2P

(
Sn ≥ α

)
;

(ii) P
(
maxk≤n Sk ≥ α

)
≥ 2P

(
Sn ≥ α + 2ε

)
−

∑n
k=1 P

(
Xk ≥ ε

)
.

Proof. Note that

P
(
max
k≤n

Sk ≥ α
)

= P
(
max
k≤n

Sk ≥ α, Sn ≥ α
)

+ P
(
max
k≤n

Sk ≥ α, Sn < α
)

= P
(
Sn ≥ α

)
+ P

(
max
k≤n

Sk ≥ α, Sn < α
)
.

(i) We need only show that the last term is ≤ P (Sn ≥ α). Let Ak =

{max
i<k

Si < α ≤ Sk} (k is the first time Si ≥ α). Then

P
(
max
k≤n

Sk ≥ α, Sn < α
)

=
n−1∑
k=1

P
(
Ak ∩ {Sn < α}

)
≤

n−1∑
k=1

P
(
Ak ∩ {Sn − Sk < 0}

)
=

n−1∑
k=1

P
(
Ak ∩ {Sn − Sk > 0}

)
≤

n−1∑
k=1

P
(
Ak ∩ {Sn > α}

)
≤ P

(
Sn ≥ α

)
.
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(Note that the key step is to switch “< 0” to “> 0” in the second equality,

because Ak is independent of {Sn − Sk} and that Sn − Sk is symmetric about

0.) This proves (i).

(ii) We make use of the following two trivial relations

(a) Sk−1 < α, Xk < ε, Sn − Sk < −ε =⇒ Sn < α,

(b) Sk−1 < α, Xk < ε, Sn ≥ α + 2ε =⇒ Sn − Sk > ε.

Following the same idea as in (i), we have

n−1∑
k=1

P
(
Ak ∩ {Sn < α}

)
≥

n−1∑
k=1

P
(
Ak ∩ {Xk < ε, Sn − Sk < −ε}

)
(by (a))

≥
n−1∑
k=1

P
(
Ak ∩ {Xk < ε, Sn − Sk > ε}

)
(by indep. and symm.)

≥
n−1∑
k=1

P
(
Ak ∩ {Xk < ε, Sn ≥ α+ 2ε}

)
(by (b))

≥
n−1∑
k=1

P
(
Ak ∩ {Sn ≥ α + 2ε}

)
− P

(
Xk ≥ ε

)
≥ P

(
Sn ≥ α + 2ε

)
−

n−1∑
k=1

P
(
Xk ≥ ε

)
.

Combining with the previous part, we have (ii). �

It follows easily from the above that

Corollary 2.2.4. Under the above assumption

P
(
max
k≤n

|Sk| ≥ α
)
≤ 2P

(
| Sn |≥ α

)
.

Proof. We make use of the symmetry:

P
(
max
k≤n

|Sk| ≥ α
)

= P
(
max
k≤n

Sk ≥ α
)

+ P
(
max
k≤n

(−Sk) ≥ α
)

≤ 2
(
P (Sn ≥ α) + P (−Sn ≥ α)

)
= 2P

(
|Sn| ≥ α

)
�.
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Finally we prove the main lemma for Theorem 2.2.1.

Lemma 2.2.5. With the notations in Theorem 2.2.1, we have
∑

n P (Bn) <∞.

Proof. We fix δ and t, then by Lemma 2.2.3

P
(
max
i≤2m

∣∣B(t+
i

2m
δ)−B(t)

∣∣ ≥ α
)

≤ 2P
(
|B(t+ δ)−B(t)| ≥ α

)
≤ 2

α4
E
(
|B(t+ δ)−B(t)|4

)
=

6δ2

α4
.

(We have made use of P (|X| ≥ α) ≤ α−4E(|X|4), and for X normal r.v.,

E(X4) = 3σ4.) Let m→ ∞, we have

P ( sup
0<r<1,r∈D

∣∣B(t+ rδ)−B(t)
∣∣ > α) ≤ 6δ2

α4
.

Therefore for En = {ω : max0≤t≤n2n
(
supr∈Ink

∩D |B(r, ω)−B(k2−n, ω)| > 1

n

)
},

P (En) ≤ n2n
(
6 · 2−2n

)
/
( 1
n

)4
= 6n52−n .

Hence
∑
P (Bn) <∞. �

Remark 1. By Theorem 2.2.1, we can assume, in addition to (i)-(iii) in the

Brownian motion,

(iv) For each ω,B(·, ω) is continuous.

Remark 2. In view of the estimation in Lemma 2.2.5 and the existence of a

separable version for any given stochastic process (Theorem 2.1.3), Theorem

2.2.1 can be extended to the more general case:

Theorem 2.2.6. (Kolomogorov’s continuity theorem) Let {Xt} be a stochas-

tic processes. Assume that there exists α, β > 0 such that

E
(
|X(t)−X(s)|α

)
≤ K|t− s|1+β ∀ t, s ≥ 0 .

Then X(t) has a continuous version.
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The reader can refer to [3, p.31] for the detail.

Definition 2.2.7. A stochastic process {Xt}t≥0 is called a measurable process

on (Ω,F , P ) if X : T × Ω −→ R is B × F measurable.

Proposition 2.2.8. The Brownian motion {Bt}t≥0 is a measurable process.

Proof. Let

B(n)(t, ω) = B(
k

2n
, ω),

k

2n
≤ t <

k + 1

2n
, k = 0, 1, 2, · · ·

Then the map B(n)(·, ·) is B × F measurable, as

{
(t, ω) : B(n)(t, ω) ≥ a

}
=

∪
k,n

([
k2−n, (k + 1)2−(n)

)
× {B(n)

k2−n(ω) ≥ a}
)

By the continuity of the sample path, B(n)(t, ω) → B(t, ω), hence B(·, ·) is

B × F measurable. �

As a corollary of the estimation in Lemma 2.2.3, we have

Theorem 2.2.9. For the Brownian motion {Bt}t≥0, we have

P
(
sup
s≤t

Bs ≥ α
)

= 2P
(
Bt ≥ α

)
, ∀ α ≥ 0.

Proof. From Lemma 2.2.3(i), we have

P
(
max
k≤2m

Bk2−mt ≥ α
)

≤ 2P
(
Bt ≥ α

)
.

Hence as m→ ∞, the continuity of B(·)(ω) implies that

P (sup
s≤t

Bs ≥ α) ≤ 2P (Bt ≥ α)
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On the other hand, Lemma 2.2.3(ii) implies

P
(
sup
s≤t

Bs ≥ α
)

≥ P
(
max
k≤2m

Bk2−mt ≥ α
)

≥ 2P
(
Bt ≥ α+

2

m

)
− 2mP

(
B2−mt ≥

1

m

)
.

By the Chebychev inequality (P (|X| ≥ ϵ)) ≤ ϵ−kE(|X|k), using k = 4), we

conclude that the last term ≤ 2m(3(t2−m)2)/m−4 = 3m4t22−m. This implies

that

P
(
sup
s≤t

Bs ≥ α
)
≥ 2P

(
Bt ≥ α

)
and the theorem follows. �

We will give a simple proof this theorem again in Section 4 using the strong

Markov property and the continuity of the sample paths. In the following we

show that the almost all the sample paths are non-differentiable everywhere.

First we observe a simple invariant property of the Brownian motion.

Proposition 2.2.10. (Scaling property) For c > 0, let

B′
t(ω) = c−1Bc2t(ω) .

Then {B′
t}t≥0 is again a Brownian motion.

Proof. It is clear that {B′
t}t≥0 has independent increment, we only need to

see the increment has a normal distribution with the correct variance. Recall

that if X ∼ N(0, σ2), then cX ∼ N(0, c2σ2). Hence

B′
t(ω)−B′

s(ω) = c−1(Bc2t(ω)−Bc2s(ω)).

It is a normal r.v. with variance c−2(c2t − c2s) = t − s. This implies that

{B′
t}t≥0 is a Brownian motion. �



62 CHAPTER 2. BROWNIAN MOTION

Theorem 2.2.11. Except for a set of zero probability, B(·, ω) is nowhere dif-

ferentiate.

Proof. Let

Xn,k = max
i=0,1,2

{∣∣B(k + (i+ 1)

2n
)
−B

(k + i

2n
)∣∣}

be the maximum oscillation of Bt on three consecutive segments. Then by

Proposition 2.2.10,

B
(k + (i+ 1)

2n
)

− B(
k + i

2n
) ∼ B2−n ∼ 2−

n
2B1.

Hence for any n, k and ϵ > 0, by independence, we have

P
(
Xn,k < ϵ

)
= P

(
|B1| ≤ 2n/2ϵ

)3
=

( 1√
2π

∫
|x|<2n/2ϵ

e−
x2

2 dx
)3 ≤ (2 · 2n/2ϵ)3

Define

Yn = min
k≤2n

Xn,k

as the smallest oscillation of the {Xn,k}k, then P (Yn < ϵ) ≤ n2n(2 · 2n/2ϵ)3. In

particular,

P (Yn < n2−n) ≤ n2n
(
2 · 2n/2 · n2−n

)3 → 0. (2.2.4)

Now consider the upper and lower derivative of B(·, ω) from the right ,

D+B(t, ω) = lim sup
h→0+

(
B(t+ h, ω)−B(t, ω)

)
/h

D+B(t, ω) = lim inf
h→0+

(
B(t+ h, ω)−B(t, ω)

)
/h

Let E = {ω : ∃ t > 0 ∋ −∞ < D+B(t, ω) ≤ D+B(t, ω) < ∞}, we claim

that P (E) = 0. Hence for ω /∈ Es, D
+B(t, ω) = ∞ or D+B(t, ω) = −∞ , and

the theorem follows.

To prove the claim, let ω ∈ E, then there exists K > 0,

−K < D+B(t, ω) ≤ D+B(t, ω) < K .
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This implies that there exists δ > 0 such that for t < s < t+ δ,

|B(s, ω)−B(t, ω)| ≤ K|s− t|.

Let n0 be such that n0 > max{4K, t} and 4/2n0 < δ; for n > n0, let k be such

that

| k
2n

− t| < δ, k = 0, 1, 2, 3,

then

Xn,k(ω) ≤ 4K2−n < n2−n.

It follows that Yn(ω) ≤ n2−n. Let An = {Yn ≤ n2−n}. Note that ω ∈ E

implies ω ∈ An for n ≥ n0, i.e., ω ∈
∪∞

k=1

∩∞
n=k An (= limn→∞An). Therefore

by (2.2.4),

P (E) ≤ P
(
limnAn

)
= lim

n→∞
P
( ∞∩
k=n

Ak

)
≤ lim

n→∞
P
(
An

)
→ 0

This proves the claim and the theorem follows.

Remark. It is well-known that the the regularity of the sample path can be

made precise.

Theorem (Law of iterated logarithm). Let {Bt}t≥0 be a Brownian motion.

Then

P
(
lims→0

Bt+s −Bs√
2t log log 1

t

= −1, lims→0
Bt+s −Bs√
2t log log 1

t

= 1
)
= 1.

The proof can be found in standard probability books (e.g., Breiman, Prob-

ability). There is a nice proof in “Diffusion Processes and Stochastic Calculus,

Baudoin, 2014”, using Doob’s maximal inequality on the exponential martin-

gale {eαBt−α2

2
t}t≥0, and the Borel-Cantelli lemma. The theorem implies that

the sample paths are Hölder continuous for order 1
2
− ε for any ε > 0. The

reader can refer to Falconer, Fractal Geometry for a direct proof, also for the

Hausdorff dimension of the paths.
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Exercies

1. Show that the Poisson Process is a measurable process.

2. Let {Bt}t≥0 be Brownian motion. For fixed t and s, find the distribution of

Bt +Bs.

3. Show that limt→0 tB(1/t) = 0 almost surely. Define B′
t = tB1/t for t > 0.

Prove that {B′
t}t is again a Brownian motion.

4. Show that
∩

t>0 σ{Bs : s ≥ t} is a sub-σ-field contains only sets of prob-

ability 0 and 1. Do the same for
∩

ϵ>0 σ{Bt : 0 < t < ϵ}; give non-trivial

examples in the σ-field.

5. Let {Wt}t≥0 be a stochastic process having independent, stationary incre-

ments and satisfies E(Wt) = 0, E(W 2
t ) = t. Show that if the finite-dimensional

distributions are preserved by the scaling transformation W (t) ∼ c−1Wc2t, c >

0, then {Wt}t≥0 is a Brownian motion (Hint: use the Lindeberg theorem [2, p.

368]).

6. (Fourier expansion of Brownian motion)

(a) Show that for s, t ∈ [−π, π],

min(s, t) =
ts

π
+

2

π

∑
n≥1

sinnt sinns

n2
.

(b) Let {X0}∞n=0 be i.i.d standard normal random variables, then

Wt =
t√
π
X0 +

√
2

π

∑
n≥1

sinnt

n
Xn

is a Brownian motion on [0, π] (see Breiman, Probability, 1968, P. 259-261).
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2.3 Some basic properties

Let f : [0, t] → R be a real-valued function, we say that f is of bounded

variation if

V (f) = sup
P

n∑
i=1

|f(ti)− f(ti−1)| <∞ .

where the supremum is taken over all partition P = {0 = t1 < t2 < ... < tn =

t} of [0, t]. It is known that if f is of bounded variation, then f is differentiable

a.e. A function f is said to have quadratic variation if the limit

lim
||P||→0

n∑
i=1

|f(ti)− f(ti−1)|2 exists ,

where ||P|| = maxi{|ti − ti−1|}. The following shows that bounded variation

and bounded quadratic variation are two non-compatible conditions.

Proposition 2.3.1. If f : [0, t] → R is continuous and is of bounded variation,

then f has zero quadratic variation.

Proof. Observe that for any P = {0 = t1 < ... < tn = t},
n∑

i=1

|f(ti)− f(ti−1)|2 ≤ max
i

|f(ti)− f(ti−1)| · V (f)

By the uniform continuity of f , the above expression tends to 0 as ||P|| tends

to 0. �

Theorem 2.3.2. Let [B](t) denote the quadratic variation of Bt, then [B](t) =

t a.e.

Proof Let δn = ||Pn|| and satisfies
∑∞

n=1 δn < ∞. For a partition Pn with

||Pn|| ≤ δn, let

Tn =

nk∑
i=1

|B(ti)−B(ti−1)|2.
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Then the expectation

E(Tn) = E
( nk∑

i=1

|B(ti)−B(ti−1)|2
)
=

nk∑
i=1

(ti − ti−1) = t. (2.3.1)

We claim that

∞∑
n=1

E(Tn − E(Tn))
2 =

∞∑
n=1

Var(Tn) <∞ a.e.

It follows that E
(∑∞

n=1(Tn −E(Tn))
2
)
<∞. Hence

∑∞
n=1(Tn −E(Tn))

2 <∞

a.e., and

lim
n→∞

(Tn − E(Tn)) = 0.

This together with (2.3.1) implies that [B](t) = limn→∞E(Tn) = t a.e.

The claim follows from

Var(Tn) = Var(

nk∑
i=1

|B(ti)−B(ti−1)|2)

=

nk∑
i=1

Var(|B(ti)−B(ti−1)|2)

≤
nk∑
i=1

E((B(ti)−B(ti−1))
4)

=

nk∑
i=1

3 · (ti − ti−1)
2

≤ 3||Pn|| ·
nk∑
i=1

(ti − ti−1) ≤ 3tδn

and
∑∞

n=1Var(Tn) ≤ 3t
∑∞

n=1 δn <∞ .

Recall that {Xt}t≥0 is a martingale if E(|Xt|) <∞ and for any s > 0

E(Xt+s | Ft) = X(t) a.e.

Here {Ft}t is filtration (right continuous sub-σ-field) generated by {Xr : 0 ≤

r ≤ t}.
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Theorem 2.3.3. The following processes are martingales:

(i) {Bt}t≥0 ; (ii) {B2
t − t}t≥0 ; (iii) {eξBt− ξ2

2
t}t≥0 .

Proof. The proof depends on the independence of Bt+s−Bt and Br, 0 ≤ r ≤ t,

and also

E(g(Bt+s −Bt) | Ft) = E(g(Bt+s −Bt))

where g is a Borel measurable function.

(i) Since Bt ∼ N(0, t), E(|Bt|) <∞. By independence,

E(Bt+s|Ft) = E(Bt + (Bt+s −Bt)|Ft)

= E(Bt|Ft) + E(Bt+s −Bt | Ft)

= Bt +B(Bt+s −Bt) = Bt .

(ii) Note that E(B2
t ) = t <∞ and

E(B2
t+s) = (Bt + (Bt+s −Bt))

2

= B2
t + 2Bt(Bt+s −Bt) + (Bt+s −Bt)

2.

Hence E(B2
t+s | Ft) = B2

t + 0 + s. It follows that

E
(
(B2

t+s − (t+ s)) | Ft

)
= B2

t − t.

(iii) It is easy to show by using completing square that

E(eξBt) =

∫
R
eξx · 1√

2πt
e−x2/2tdx = etξ

2/2.

We then apply the same proof as in (ii). �

A process {Xt}t≥0 is a Markov process if for any s, t > 0,

P (Xt+s ∈ E | Ft) = P (Xt+s ∈ E | Xt)

where Ft generated by Xr, 0 ≤ r ≤ t.
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Theorem 2.3.4. {Bt}t≥0 is a Markov process.

Proof. Since Ft is generated by Bt1 , Bt2 , ..., Btn for any 0 < t1 < ... < tn = t,

to suffices to show that

P (Bt+s ∈ E | Bt1 , ..., Btn) = P (Bt+s ∈ E | Btn). (2.3.2)

Let X1 = Bt1 , Xi = Bti −Bti−1
, i = 1, · · · , n and Xn+1 = Bt+s −Btn . Also

let Si = X1 + ... + Xi, the sum of independent random variables. We have

proved in Theorem 1.3.3 that

P
(
Sn+1 ∈ E | S1, ..., Sn

)
= P (Sn+1 ∈ E | Sn) = µn+1(E − Sn)

This verifies (2.3.2) with Si = Bti and µn+1 the density function of Bt+s. �

With the {Bt}t≥0 as a Markov process, it has a transition probability

P (y, t;x, s) = P
(
Bt ≤ y | Bs = s

)
. It follows that the density function

is

f(y, t; x, s) =
1√

2π(t− s)
e−(y−x)2/2(t−s).

The transition probability satisfies the stationary property P (y, t; x, s) = P (y, t−

s;x, 0).

Analogous to the discrete case, a random variable τ : Ω → [0,∞) is called

a stopping time if

{τ ≤ t} ∈ Ft ∀ t ≥ 0 (2.3.3)

where {Ft}t≥0 is a filtration (see Section 2.1). It follows that if τ is a stopping

time, then {τ < t} ∈ Ft; this follows from

{τ < t} =
∪∞

n=1

{
τ ≤ t− 1

n

}
∈ Ft−1/n ⊆ Ft.

Also by the right continuity of {Ft}t≥0, it is easy to show that “ {τ < t} ∈ Ft

for all t ≥ 0” actually equivalent to (2.3.3).
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The pre-τ -field Fτ is defined as the family M ∈ F such that

M ∩ {τ ≤ t} ∈ Ft , t ≥ 0 . (2.3.4)

The post-τ field F ′
τ is defined as the sub-σ-field generated by the process Fτ+t.

Example. Let Ft = σ{Bs : s ≤ t}, then τ = inf{t : Bt = 1} is a stopping

time. Indeed let r denote a rational, then

{τ < t} =
∪

r<t

∩
m≥0

{
Br ≥ 1− 1/m

}
∈ Ft

The event M = {infs<αBs > −1} is the set of paths that hit 1 before hit −1.

It is in Fτ because (r, s are rationals)

M c ∩ {τ < t} =
∪

s<r<t

∩
m,n≥0

{
Bs ≤ −(1− 1/n), Bt ≥ 1− 1/m

}
∈ Ft.

Theorem 2.3.5. Let τ be a stopping time finite a.e., then

B∗
t = Bτ+t −Bτ

is a Brownian motion. Moreover for M ∈ Fτ , and for E any Borel set in Rk,

P
(
((B∗

t1
· · ·B∗

tk
) ∈ E) ∩M

)
= P

(
(B∗

t1
, · · · , B∗

tn) ∈ E
)
P (M)

= P
(
(Bt1 · · ·Btn

)
∈ E)P (M) .

Proof. We will prove the identities, then by takingM = Ω, (B∗
t1
, · · · , B∗

tk
) has

the same distribution as (Bt1 · · ·Btk). Hence {B∗
t }t≥0 is a Brownian motion.

We first prove the case τ has a countable range D. Note that B∗
t is in the

post-τ field F ′
τ , and for any Borel set E in R

{
B∗

t ∈ E
}
=

∪
s∈D

{
Bs+t −Bs ∈ E, τ = s

}
.
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Let M ∈ Fτ and E ⊆ Rk, then by the independence,

P (((B∗
t1
, · · · , B∗

tn) ∈ E) ∩M)

=
∑
s∈D

P
(
(B∗

t1
, · · · , B∗

tn) ∈ E) ∩M ∩ {τ = s}
)

(2.3.5)

=
∑
s∈D

P ((B∗
t1
· · ·B∗

tn) ∈ E)P (M ∩ {τ = s})

= P ((B∗
t1
, · · · , B∗

tn) ∈ E)P (M).

For the second identity, we takeM = Ω, then we can replace the (B∗
t1
, · · · , B∗

tn)

in (2.3.4) by (Bt1 , · · · , Btn) and follow by the same argument.

For the general τ , we let

τn =


k

2n
if

k − 1

2n
≤ τ <

k

2n
, k = 1, 2, · · · ,

0 , τ = ∞.

It is clear that τn ↘ τ . For k2−n ≤ τ < (k + 1)2−n,

{τn ≤ t} = {τ ≤ k2−n} ∈ Fk2−n ⊆ Ft.

This implies τn is a stopping time. Let B
(n)
t = Bt+τn−Bτn andM ∈ Fτ (⊆ Fτn).

Then for H a closed rectangle in Rk, by the above , we have

P
(
((B

(n)
t1 , · · · , B

(n)
tk

) ∈ H) ∩M
)

= P ((Bt1 , · · · , Btn) ∈ H
)
P (M),

Since {τn(ω)} converges to τ(ω) and the sample paths are continuous, we can

take limit so that

P
(
((B∗

t1
, · · · , B∗

tk
) ∈ H) ∩M

)
= P ((Bt1 , · · · , Btn) ∈ H

)
P (M).

The rest of the theorem follows readily. �

Theorem 2.3.6. (The strong Markov property) Let τ be a stopping time

finite a.e., then for any Borel set E ⊆ R,

P
(
Bt+τ ∈ E | Fτ

)
= P (Bt+τ ∈ E | Bτ ) .
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Proof. We write Bt+τ = (Bt+τ − Bτ ) + Bτ = B∗
t + Bt. It follows from

Theorem 2.3.5 that Bτ ∈ Fτ and B∗
t ∈ F ′

τ , and they are independent. We can

use Theorem 1.3.3 : Let X,Y be independent and Y ∈ F , then P (X + Y ∈

E | F) = P (X + Y ∈ E | Y ), to conclude the theorem. �
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Exercises

1. Consider a process with three states {a, b, c}, and follows the rule that a

goes to b, b goes to c and c goes to a. This is a Markov chain. Show that

P (X3 = c | X2 = a or b, X1 = c) ̸= P (X3 = c | X2 = a or b).

Explain this situation in regard to the independence of the future and the past

subject to the present.

2. Show that a process {X(t)}t≥0 with stationary and independent increment

and right continuous sample paths has the strong Markov property.

3. Let {N(t)}t be a Poisson process with rate λ. Prove the following are

martingales: a. N(t)−λt ; b. (N(t)−λt)2−λt; c. elog(1−ξ)N(t)+ξλt, 0 < ξ < 1.

4. For T <∞, is X(t) = B(T − t)−B(T ) a Brownian motion on [0, T ]?
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2.4 The exit time and hitting time

We use Px(·) to denote the probability of the Brownian motion starting at x.

For a ∈ R, let

Ta = inf{t > 0 : B(t) = a}

be the first time of the Brownian motion hitting a. Then Ta is a stopping time.

We first give two propositions to describe the exit and hitting probability.

Proposition 2.4.1. Let a < x < b and τ = min{Ta, Tb} be the exit time, then

Px(τ <∞) = 1 and the waiting time for exit is Ex(τ) <∞.

Proof. Note that

{τ > 1} =
{
B(r) ∈ (a, b) ∀ 0 < r < 1

}
⊆ {B(1) ∈ (a, b)}.

Then

maxz∈(a,b)Pz(B(1) ∈ (a, b)) ≤ maxz∈(a,b)
( 1√

2π

∫ b

a

e−(z−y)2/2dy
)

:= θ < 1 .

It follows that

Px

(
τ > n

)
= Px

(
τ > n− 1 and B(r) ∈ (a, b) ∀ n− 1 < r ≤ n

)
= Px(τ > n− 1) Px

(
B′(r) +B(n− 1) ∈ (a, b) ∀ 0 < r < 1 | {τ > n− 1}

)
,

where B′(r) = B(r + (n− 1))− B(n− 1). The last part can be estimated as

follows:

≤ Px

(
B′(1) +B(n− 1) ∈ (a, b) | {τ > n− 1}

)
= Px

(
B′(1) +B(n− 1) ∈ (a, b) | {Bn−1 ∈ (a, b)}

)
=

(
Px(Bn−1 ∈ (a, b))

)−1
∫ b

a

P (B′(1) + y ∈ (a, b))dµx(y) ≤ θ,
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where µx is the distribution of Bn−1 starts at x. Hence

Px(τ > n) ≤ Px(τ > n− 1) θ ≤ · · · ≤ θn.

This implies that Px(τ = ∞) = 0, i.e., Px(τ < ∞) = 1. For the second part,

we make use of E(X) ≤
∑∞

n=0 P (X > n) for X ≥ 0:

E(τ) ≤
∞∑
n=1

θn <∞ . �

Proposition 2.4.2. For any a, b ∈ R, Pa(Pb <∞) = 1.

Remark. It follow that Pa(Ta <∞) = 1 at any a, and the path will return to

a again and again. This property is called the recurrent property. We will see

in Proposition 2.4.4 that, unlike Proposition 2.4.1, the waiting time for return

is ∞ .

Proof. We show that P0(T1 < ∞) = 1. The other cases are similar. Observe

that for any a ̸= b, the symmetry implies P(a+b)/2(Ta < Tb) =
1
2
. Hence

P0

(
T−1 < T1

)
=

1

2
, P−1

(
T−3 < T1

)
=

1

2
, P−3

(
T−7 < T1

)
=

1

2
, · · ·

By the continuity of the paths, to reach −(2n − 1), they must pass though

−1,−3, · · · . Let An =
{
T−(2n−1) < T1

}
, by the strong Markov property,

P0

(
An

)
= P0

(
T−1 < T1)P−1(T−3 < T1

)
· · ·P−(2n−1)

(
T−(2n−1) < T1

)
.

It implies that P0(An) = 2−n, so that P0(
∩∞

n=1An) = 0. This yields

1 = P0

(∪∞

n=1
Ac

n

)
= lim

n
P0

(
T1 ≤ T−(2n−1)

)
= P0

(
T1 <∞

)
and the proposition follows. �

Let M(t) = max0≤s≤tB(s). It is clear that

{M(t) ≥ a} = {Ta ≤ t}. (2.4.1)
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Theorem 2.4.3. For a ∈ R, P
(
M(t) ≥ a

)
= 2P (B(t) ≥ a).

Remark. We have proved this in Theorem 2.2.9. Here we give a simple proof

by the hitting time, using the paths are continuous.

Proof. Note that {B(t) ≥ a} = {Ta ≤ t, B(t)− B(Ta) ≥ 0}, and {Ta ≤ t} ∈

FTa , which is independent of {B(t)−B(Ta) ≥ 0} ∈ F ′
Ta
. Hence

P ({B(t) ≥ a}) = P (Ta ≤ t, B(t)−B(Ta) ≥ 0)

= P
(
Ta ≤ t

)
P
(
B(t)−B(Ta) ≥ 0

)
= P

(
Ta ≤ t

)
P
(
B∗(t− Ta) ≥ 0

)
= P

(
Ta ≤ t

)
· 1
2

(by symmetry)

=
1

2
P (M(t) ≥ a). �

As an application of Theorem 2.4.3, we have

Proposition 2.4.4. The r.v. Ta : (Ω,F , P ) → [0,∞) has density

fTa =
|a|√
2π
t−3/2e−|a|2/2t, t > 0 , (2.4.2)

and E(Ta) = ∞.

Proof. Let a > 0, we have by Theorem 2.4.2,

P (Ta ≤ t) = P (M(t) ≥ a) = 2P (B(t) ≥ a)

= 2

∫ ∞

a

e−y2/2tdy =

√
π

2

∫ ∞

π/
√
t

e−u2

du.

The density function follows from taking derivative of the above. Since the

density of Ta is ≈ t−3/2, it is clear that E(Ta) = ∞. �
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Corollary 2.4.5. For any 0 < a < b, Tb − Ta is independent of B(t), t ≤ Ta;

the distribution function of Tb − Ta is

fTb−Ta(t) =
b− a√
2π

t3/2e−(b−a)2/2t .

Proof. From Theorem 2.3.5, B∗(t) = B(t+Ta)−B(Ta) is a Brownian motion,

and is independent of B(s), s ≤ Ta. Hence the same is for

Tb − Ta = inf{t > 0 : B∗(t) = b− a},

and the density is given by Proposition 2.4.4. �

We use the reflection property of the Brownian motion in Theorem 2.4.3.

In the following, we formulate it into a theorem.

Theorem 2.4.6. (Reflection principle) Let τ be a stopping time. Define

B̂(t) =

B(t), if t ≤ τ

2B(τ)−B(t), if t > τ

Then B̂t is also a Brownian motion.

Remark. Note that for t > τ , B̂t(ω) = −
(
Bt(ω) − Bτ (ω)

)
+ Bτ (ω) is the

reflection along a = Bτ (ω).

Proof. Let

C[0,∞) =
{
f continuous on [0,∞), f(0) = 0

}
be equipped with the σ-field generated by the cylinder sets. (It contains all

the continuous sample paths of the Brownian motion.) Define a map Φ :

[0,∞)× C[0,∞)× C[0,∞) → C[0,∞) by

Φ(T, f, g) =

f(t), if 0 ≤ t ≤ T ,

f(t) + g(t− T ), if t ≥ T .
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It is clear that Φ is measurable.

Note that Bt∧τ , it is Fτ -measurable. Let B∗
s = Bs+τ − Bτ , s > 0. Then

both B∗
s and −B∗

s are Brownian motions with the same distribution, and are

independent of Fτ . Hence (τ, Bt∧τ , B
∗
s ) and (τ, Bt∧τ ,−B∗

s ) have the same

distribution (as r.v. on [0,∞)× C[0,∞)× C[0,∞)). It follows that

Φ
(
τ, B(·)∧τ , B

∗
(·)
)

and Φ
(
τ, B(·)∧τ , −B∗

(·)
)

have the same distribution. Note that the first one is just Bt and the second

one is B̂(t). We conclude that B̂(t) is also a Brownian motion. �

As a corollary we have

Corollary 2.4.7. The joint distribution of (B(t),M(t)) has density

fB,M(x, y) =
2√
2π

2y − x

t3/2
e−(2y−x)2/2t, y ≥ 0, x .

Proof. Let y ≥ 0, x, and let B̂(t) be the reflection of B(t) at Ty. Then

P (B(t) ≤ x, M(t) ≥ y) = P (B(t) ≤ x, Ty ≤ t)

= P (B̂(t) ≥ 2y − x, Ty ≤ t)

= P (B̂(t) ≥ 2y − x)

= 1− 1√
2πt

∫ ∞

2y−x

e−u2/2tdu .

The density function is obtained by taking partial derivatives on x and y .

�

In the rest of the section, we consider the zeros of B(t).

Lemma 2.4.8. Let Zt = {B(s) = 0 for some s ∈ (0, t)}. Then for a ̸= 0,

Pa(Zt) =
|a|√
2π

∫ t

0

u−3/2e−a2/2udu .
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Proof. Assume a > 0. Then

Pa(Zt) = P (min0≤s≤t(B(s) + a) ≤ 0)

= P (min0≤s≤tB(s) ≤ −a)

= P (M(t) ≥ a) (by symmetry)

= P (Ta ≤ t)

=
a√
2π

∫ t

0

u−3/2e−a2/2udu (by Proposition 2.4.4).

Proposition 2.4.9. The probability that {B(t)}t has at least one zero in time

(r, s) is
2

π
arccos

√
r

s
.

Proof. Let Ar,s = {B(t) = 0 for some t ∈ (r, s)}, and let

h(x) = P (Ar,s | Br = x) = Px(Ar,s).

Hence by the above lemma,

P (Ar,s) =

∫ ∞

−∞
h(x)

1√
2πr

e−x2/2rdx

=

√
2

πr

∫ ∞

0

( x√
2π

∫ s−r

0

u−3/2ex
2/2udu

)
e−x2/2rdx

= · · ·

=
2

π
arctan

√
s− r

r
=

2

π
arccos

√
r

s
. �

Corollary 2.4.10. For 0 < r < s, the probability that no zero in (r, s) is
2

π
arcsin

√
r

s

Proof. It follows from the above and

1− 2

π
arccos

√
r

s
=

2

π
arcsin

√
r

s
�

.
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To conclude, we prove a special property of the zero sets of the sample

paths.

Lemma 2.4.11. P (
∩

0≤t≤1B(t) < 0) = P (
∩

0≤t≤1B(t) > 0) = 0.

Proof. We make use of Theorem 2.4.3 :

P
( ∩
0≤t≤1

B(t) ≤ 0
)

= P
(
max0≤t≤1B(t) ≤ 0

)
= 1− P (max0≤t≤1B(t) > 0)

= 1− 2P (B(1) > 0)

= 1− 2

∫ ∞

0

1√
2π
e−

x2

2 dx = 0 . �

Lemma 2.4.12. Let Z1(ω) = {t : B(t, ω) = 0, 0 ≤ t ≤ 1}, then for almost

all ω, Z1(ω) has 0 as a limit point.

Proof. From Lemma 2.4.11, we see that

P
(
B(t) crosses 0 for some 0 ≤ t ≤ 1

)
= 1.

By the scaling property (Proposition 2.2.10), we conclude that

P
(
B(t) crosses 0 for some 0 ≤ t ≤ r

)
= 1.

In particular, we take rn ↘ 0. Then

P
( ∞∩
n=1

{
B(t) crosses 0 for some 0 ≤ t ≤ rn

})
= 1.

This implies the lemma. �

Theorem 2.4.13. For almost all ω, Z1(ω) is a perfect set (hence uncountable)

and has Lebesgue measure zero .
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Proof. We use |Z1| to denote the Lebesgue measure of Z1, it is a r.v. and

E(|Z1|) = E
( ∫ 1

0

χ{B(t)=0} dt
)

=

∫ 1

0

E
(
χ{B(t)=0}

)
dt

=

∫ 1

0

P (B(t) = 0) dt = 0.

Hence |Z1| = 0 P-a.e.

Next we note that B(·, ω) is continuous, hence Z1(ω) is closed. We need

to show that it has no isolated point, and it is a perfect set.

To this end for any rational r ∈ (0, 1), let τr be the least t ≥ r such that

B(t) = 0, then τr is a stopping time. Let

Ar = {ω : τr(ω) is the limit point of Z1(ω)}.

Then by the strong Markov property and Lemma 2.4.12, we have P (Ar) = 1.

It follows that P (
∩

r Ar) = 1 (where the intersection is taken over all rationals

≥ 0. Now for any ω ∈
∩

r Ar and for s ∈ Z1(ω), s > 0, if s is a left limit

point of Z1(ω), then it is not an isolated point. If s is not a left limit point of

Z1(ω), then s = τr(ω) for some rational r < s. This implies that s is the right

limit point of Z1(ω) (by the strong Markov property, and use the lemma). In

either case, s is not an isolated point. Hence Z1(ω) has no isolated point and

the proof of theorem is complete.
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Exercises

1 Show that M(t) = sup0<s≤t{B(s)}, |B(t)| and M(t) − B(t) have the same

distribution.

2. For a, b > 0, let τ = min{T−a, Tb} be the first that the Brownian motion

hits a or b. What is P
(
B(τ) = −a

)
and P

(
B(τ) = b

)
?

What are the hitting probabilities if we change a and b to two slant barriers

−a+ rt and b+ rt for some r > 0.

3. Suppose X1, · · · , Xn are independent and each has density function

ha(t) =
a√
2π

t−3/2e−a2/2t, t > 0

(the density function for the first time the B.M. hits a). Show that

(a) (X1+ · · ·+Xn)/n
2 also has the same distribution. Contrast this with

the law of large numbers.

(b) P
(
(maxk≤nXk)/n

2 ≤ x
)
→ e−a

√
2/(πx) for x > 0.

4. (a) Show that the probability of the last zero preceding time 1 is distribution

over (0, 1) with density π−1(t(1− t))−1/2.

(b) Similarly calculate the distribution of the position of the first zero

following time 1.

(c) Calculate the joint distribution of the two zeros in (a) and (b).
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Chapter 3

Stochastic Integration and Ito

Calculus

3.1 Wiener integral

The most basic integration theory is based on the Riemann integral of a real-

valued function on an interval [0, T ]. It is easy to extend the integrand to

be a vector-valued or a Banach space-valued function. The Riemann Stielt-

jes integral is an extension such that the integrator is a function of bounded

variation. The Lebesgue integral is to allow the integrator to be a measure

on a more general measure space. In this section, we will consider the Wiener

integral
∫ T

0
f(t)dB(t), where f(t) is a real-valued function, integrating over

the Brownian motion.

Suppose f is a real-valued step function on [0, T ], f(t) = ci ti ≤ t <

ti+1, i = 0, 1, · · · , n− 1. We write ∆Bi = B(ti+1)−B(ti), and define

I(f) =

∫ T

0

f(t)dB(t) =
n−1∑
i=0

ci∆Bi. (3.1.1)

83
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Example 3.1.1. Let f(t) be a step function on [0, 3] that takes values −1, 1, 2

on the intervals [0, 1), [1, 2) and [2, 3] respectively. Then

I(f) =

∫ 3

0

f(t)dB(t)

= (−1)(B(1)−B(0)) + 1 · (B(2)−B(1)) + 2 · (B(3)−B(2))

= B(1) + (B(2)−B(1)) + 2 · (B(3)−B(1))

∼ N(0, 1) +N(0, 1) +N(0, 4) (independent sum)

= N(0, 6).

Lemma 3.1.1. Let f be a step function on [0,T]. Then I(f) ∈ L2(Ω), it is a

normal r.v. with mean 0 and variance

σ2 = E((I(f))2) =

∫ T

0

|f(t)|2dt .

Proof. Recall that if X1, · · · , Xn are independent and Xi ∼ N(µi, σ
2
i ), then

a1X1 + · · ·+ anXn ∼ N(a1µ1 + · · ·+ anµn, a
2
1σ

2
1 + · · ·+ a2nσ

2
n).

It follows that I(f) is a normal r.v. with mean 0. For the variance, we have

E(I(f)2) = E
(∑

i,j

cicj∆Bi∆Bj

)
=

∑
i

c2iE
(
(∆Bi)

2
)

=
∑
i

c2i (ti+1 − ti) =

∫ T

0

| f(t) |2 dt . �

Lemma 3.1.2. Suppose f ∈ L2[0, T ], then there exists a sequence of step

function {fn} converges to f a.e., and {I(fn)}∞n=1 is a Cauchy sequence in

L2(Ω).

Proof. The first statement is well known. The second statement follows from

E
(
(I(fn)− I(fm))

2
)

=

∫ T

0

|fn(t)− fm(t)|2dt . �
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Definition 3.1.3. For f ∈ L2[0, T ], we define I(f) = limn→∞ I(fn) where

{fn} is as in Lemma 3.1.2, and call I(f) the Wiener integral of f .

Clearly I(f) ∈ L2(Ω) by the completeness of L2(Ω) and the definition is

independent of the choice of the subsequence {fn}.

Proposition 3.1.4. For f ∈ L2[0, T ], I(f) ∈ L2(Ω) is a normal r.v. with

mean 0 and variance σ2 = ∥ f ∥2 =
∫ T

0
|f(t)|2dt .

Proof. We need to use the fact that if Xn ∼ N(µn, σn) and if µ = limn→∞ µn,

σ = limn→∞ σn, then Xn → X in probability (or in L2(Ω)) implies X ∼

N(µ, σ) (see Lemma 2.2.2). �

Corollary 3.1.5. If f, g ∈ L2[0, T ], then E(I(f)I(g)) =
∫ T

0
f(t)g(t) dt.

Proof. This follows from

E
(
(I(f) + I(g))2

)
=

∫ T

0

|f + g|2 =

∫ T

0

|f |2 + 2

∫ T

0

fg +

∫ T

0

| g |2

and also

E
(
(I(f) + I(g))2

)
= E(|I(f)|2 + 2I(f)I(g) + |I(g)|2)

=

∫ T

0

|f |2 + 2E(I(f)I(g)) +

∫ T

0

|g|2. �

Next we want to consider the relationship of (
∫ T

0
f(t)dB(t))(ω) and∫ T

0
f(t)dB(t, ω). Note the B(t, ω) has unbounded variation (but has finite

quadratic variation),
∫ T

0
f(t)dB(t, ω) is not defined as a Riemann Stieltjes

integral literally. On the other hand, we can redefine the integral as follows:

For [a, b] ⊆ [0, T ]

(RS)

∫ b

a

f(t)dB(t, ω) :=
[
f(t)B(t, ω)

]b
a
−

∫ b

a

B(t, ω)df(t)

provided the last term is defined.
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Proposition 3.1.6. Let f be continuous and of bounded variation on [0, T ],

then for any [a, b] ⊆ [0, T ],

( ∫ b

a

f(t) dB(t)
)
(ω) = (RS)

∫ b

a

f(t) dB(T, ω).

Proof. For any partition Pn = {t0 < · · · < tn} of [a, b], we consider the step

function

fn(t) =
n−1∑
i=0

f(ti)χ[ti+1,ti)(t) .

Note that the continuity of f implies fn → f in L2[a, b] as ||Pn|| → 0. Hence

∫ b

a

f(t)dB(t) = lim
||Pn||→0

n−1∑
i=0

f(ti)∆Bi in L2(Ω).

By passing to subsequence and using the same notation for convenience, we

have ( ∫ b

a

f(t)dB(t)
)
(ω) = lim

||Pn||→0

n−1∑
i=0

f(t)∆Bi(ω) a.e.

On the other hand, for almost all ω,

(RS)

∫ b

a

f(t)dB(t, ω) = f(t)B(t, ω)
]b
a
− lim

||Pn||→0

n∑
i=1

B(ti, ω)(f(ti)− f(ti−1))

= lim
||Pn||→0

n−1∑
i=0

f(ti)∆Bi(ω) .

(The first limit exists as f is of bounded variation; the second equality follows

from the Abel transform of series.) This yields the proposition. �

Example 3.1.2.
∫ 1

0
B(t)dt ∼ N(0, 1/3).

By regarding B(·) ∈ C
(
[0, 1], L2(Ω)

)
, we have by the definition of Reimann
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integral,
( ∫ 1

0
B(t) dt

)
(ω) =

∫ 1

0
B(t, ω) dt for almost all ω, and∫ 1

0

B(t, ω)dt =
[
tB(t, ω)

]1
0
− (RS)

∫ 1

0

t dB(t, ω)

= B(1, ω) − (RS)

∫ 1

0

t dB(t, ω)

= (RS)

∫ 1

0

(1− t) dB(t, ω)

=
( ∫ 1

0

(1− t) dB(t)
)
(ω) (by Proposition 3.1.6)

Since
∫ 1

0
(1 − t)dB(t) ∼ N(0, σ2) with σ2 =

∫ 1

0
(1 − t)2dt = 1/3 (Proposition

3.1.4), we have
∫ 1

0
B(t)dt ∼ N(0, 1/3).

Theorem 3.1.7. Let f ∈ L2[0,∞), then

Y (t) =

∫ t

0

f(s)dB(s)

is a Gaussian process with mean 0 and covariance cov(Y (t), Y (t + s)) =∫ t

0
|f(u)|2du for all s, t ≥ 0.

Moreover {Y (t)}t≥0 is a martingale with respect to Ft = σ{B(s) : s ≤ t}.

(Recall that Gaussian process means the joint distribution at t1, ·, tk is a mul-

tivariate normal r.v. which is determined by the mean and the covariance.)

Proof. We observe that for u, t ≥ 0,

E
( ∫ t+u

t

f(s)dB(s) | Ft

)
= 0 .

Indeed this holds for step functions on [t, t+ u) as∫ t+u

t

f(s)dB(s) =
n−1∑
i=0

ci∆Bi

and E
(
∆Bi | Ft

)
= E

(
∆Bi

)
= 0. For f ∈ L2([0, T ]), we can find step functions

fn → f in L2. Hence In(f) → I(f) and

E
( ∫ t+u

t

f(s)dB(s) | Ft

)
= lim

n→∞
E
( ∫ t+u

t

fn(s)dB(s) | Ft

)
= 0.
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We already see that each Y (t) is a normal r.v. with mean 0 and variance∫ t

0
|f(s)|2ds. The covariance is

Cov(Y (t), Y (t+ u)) = E(Y (t)Y (t+ u))

= E
(
E
(
Y (t)(Y (t) +

∫ t+u

t

f(s)dB(s)) | Ft

))
= E(|Y (t)|2) =

∫ t

0

|f(s)|2ds .

It is direct to that that the joint distribution (Yt1 , · · · , Ytn) ∼ N(0,Σ) with Σ

determined by this covariance.

To show that {Yt}t≥0 is a martingale, we observe that E(|Y (t)|2) =∫ t

0
|f(s)|2ds <∞ and

E(Y (t+ u) | Ft) = Y (t) + E
( ∫ t+u

t

f(s)dB(s) | Ft

)
= Y (t). �
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Exercises

1. Let X(t) = tB(t). Find the quadratic variation of of X(t).

2. Find all constants a, b and c such that X(t) =
∫ t

0
(a+ bu/t+ c(u/t)2) dB(t)

is also a Brownian motion.

3. Let B(t) be a Brownian motion. Show that X(t) =
∫ t

0
(2t − u)dB(u) and

Y (t) =
∫ t

0
(3t − 4u)dB(u) are Gaussian processes with the same mean and

covariance functions.

4. Find the distribution of the integral
∫ t

0
B(s) cos(t− s)ds.

5. Given values of α for which the process Y (t) =
∫ t

0
(t−s)−αdB(s) is defined.

Find the covariance function of Y . (This process is called fractional Brownian

motion.)

6. Show that if {Xn} is a sequence of normal r.v. and convergent in dis-

tribution to X, the X is either a normal r.v. or degenerate. Deduce that if

E(Xn) → µ and var(Xn) → σ2, then X ∼ N(µ, σ).
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3.2 Ito integral

In this section we define the Ito integral
∫ T

0
X(t)dB(t) where X(t) is a stochas-

tic process adapted to Ft = σ{B(s) : 0 ≤ s ≤ t}.

First we consider the case X(t) is a step process on [0, T ], i.e., there exist

0 = t0 < · · · < tn = T such that

X(t) = ξi, ti ≤ t < ti+1, ξi ∈ Fti and E(|ξi|2) <∞.

We define

I(X) =

∫ T

0

X(t)dB(t) =
n−1∑
i=0

ξi∆Bi.

Proposition 3.2.1. For the above integral I(·) on the step processes,

(i) I(·) is linear;

(ii) for [a, b] ⊂ [0, T ],
∫ T

0
χ[a,b](t)dB(t) = B(b)−B(a);

(iii) E(
∫ T

0
X(t)dB(t)) = 0;

(iv) E
( ∫ T

0
X(t)dB(t)

)2
=

∫ T

0
E(X(t)2)dt.

(Note that (iii),(iv) imply
∫ T

0
X(t)dB(t) ∈ L2(Ω) is a r.v. on Ω with mean 0

and σ2 =
∫ T

0
E(X(t)2)dt.)

Proof. For (iii), it follows from the independence of ξi and ∆Bi,

E
(
ξi∆Bi

)
= E

(
ξi)E(∆Bi) = 0 .

For (iv), we write E(|I(f)|2) =
∑

i,j E(ξiξj∆Bi∆Bj). Then using the in-

dependence, it is direct to show that only the i = j terms left, which is of the

expression on the right side of (iv). �
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We use L2
ad([0, T ]×Ω) to denote the space of measurable process X(·, ·) on

[0, T ]× Ω satisfying

(i) X(t, ·) is adapted to {Ft}, i.e., X(t, ·) ∈ Ft;

(ii)
∫ T

0
E(X(t)2)dt <∞.

For example, X(t) = B(t) and X(t) = max0≤s≤tB(s) are adaptable to

{Ft}; but X(t) = B(t+ 1) is not adaptable to {Ft} .

Lemma 3.2.2. Suppose X ∈ L2
ad([0, T ] × Ω), then there exist a sequence of

step processes {X(n)} ⊆ L2
ad([0, T ]× Ω) such that

lim
n→∞

∫ T

0

E
(
|X(n)(t)−X(t)|2

)
dt = 0. (3.2.1)

Proof. The idea is similar to the Wiener integral, but a little more compli-

cated. We divide the proof into three steps.

(i) if E(X(t)X(s)) is continuous for any s, t ∈ [0, T ], let Pn = {0 = t0 <

t1 · · · < tn = T} be a partition of [0, T ], and let

X(n)(t) = X(ti), ti ≤ t < ti+1.

From the assumption, limn→∞E
(
|X(s)−X(t)|2) = 0 implies that

limn→∞E
(
|X(n)(t)−X(t)|2

)
= 0. As

E
(
|X(n)(t)−X(t)|2

)
≤ 2(E(|X(n)(t)|2) + E(|X(t)|2) ≤ 4 sup

a≤s≤b
E(X(s)|2).

By the dominated convergence theorem,

lim
n→∞

∫ T

0

E(| X(n)(t)−X(t) |2)dt = 0.

(ii) If X is bounded, then we will construct a sequence of process {Yn}n
adaptable to {Ft}, satisfies (i), and E(|Yn(t)−X(t)|2) → 0. Then using (i), we
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can find a step process {X(n)}n such that E(|X(n)(t)−E(Yn(t)|2) is sufficiently

small, and goes to 0 as n→ ∞. Then

E(|X(n)(t)− E(X(t)|2) → 0,

which yields (3.2.1) as in (i).

To this end, we let φn(t) = ne−nt, t ≥ 0. Note that φn ≥ 0,
∫
φn = 1 and

φn(t)dt→ δ0, hence it is an approximate identity. Define

Yn(t) = φn ∗X(t) =

∫ t

0

φn(s)X(t− s)ds.

It is direct to check that

(a) Yn(t) is adaptable to Ft;

(b) lims→tE
(
|Yn(s)− Yn(y)|2

)
= 0, hence (i) is satisfied;

(c) limn→∞E
(
|Yn(t)−X(t)|2

)
= 0.

(iii) Finally, for the general X ∈ L2
ad([0, T ]×Ω), we can approximate X by

a sequence of bounded processes:

Xn(t, ω) =

 X(t, ω) if |x(t, ω)| ≤ n;

0 if |X(t, ω)| > n.

and a routine argument yields (3.2.1). �

Let X ∈ L2
ad([0, T ] × Ω), and let X(n) be as in Lemma 3.2.2. Let Y (n) =∫ T

0
X(n)(t)dB(t) ∈ L2(Ω). Then by Proposition 3.2.1 (iv)

E(|Y (n) − Y (m)|2) =
∫ T

0

E(|X(n)(t)−X(m)(t)|2)dt −→ 0.

Hence {Y (n)} is a Cauchy sequence in L2(Ω).
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Definition 3.2.3. For X ∈ L2
ad([0, T ]× Ω), we define

I(X) =

∫ T

0

X(t)dB(t) = lim
n→∞

∫ T

0

X(n)(t)dB(t) ∈ L2(Ω),

and call I(X) the Ito integral of X over B(t).

We remark that if X ∈ L2
ad([0, T ] × Ω) and assume that E(X(s)Y (t)) is

continuous as in the proof of Lemma 3.2.2, then the integral can be expressed

as the Riemann sum∫ T

0

X(t)dB(t) = lim
||Pn||→0

n−1∑
i=0

X(ti)∆Bi.

Example 3.2.1
∫ T

0
B(t)dB(t) = 1

2
(B(T )2 − T ).

For 0 = t0 < · · · < tn = T , let

X(n)(t) = B(ti) ti ≤ t < ti+1.

Then I(X(n)) =
∑n−1

i=0 B(ti)∆Bi. Observe that a(b−a) = 1
2
(b2−a2− (b−a)2).

Hence

I(X(n)) =
1

2

n−1∑
i=0

(B2(ti+1)−B2(ti)) − 1

2

n−1∑
i=0

(B(ti+1)−B(ti))
2

=
1

2
(B(T )2 −B(0)2) − 1

2

n−1∑
i=0

(∆Bi)
2.

By taking limit, the second part is the quadratic variation of B(t), which

converges to T (Theorem 2.3.2). Hence

I(B) =

∫ T

0

B(t)dB(t) =
1

2
(B(T )2 − T ).

Example 3.2.2.
∫ T

0
B(t)2dB(t) = 1

3
B(T )3 −

∫ T

0
B(t)dt.
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We adopt the same method as last example. By making use of a2(b− a) =

1
3
(b3 − a3 − (b− a)3 − 3a(b− a)2), we have

n−1∑
i=0

B(ti)
2∆Bi =

1

3
(B(T )3−B(0)3)−

n−1∑
i=0

(∆Bi)
3− 3

n−1∑
i=0

B(ti)(∆Bi)
2. (3.2.2)

Note that

E
(∣∣ n−1∑

i=0

(∆Bi)
3
∣∣2) = n−1∑

i=0

E
(
(∆Bi)

6
)
=

n−1∑
i=0

15(ti+1 − ti)
3 ≤ 15||Pn||2 · T ,

which tends to 0 as ||Pn|| → 0. Hence
∑n−1

i=0 (∆Bi)
3 → 0 a.e. as well.

For the last term, we observe that

E
(∣∣ n−1∑

i=0

B(ti)(∆Bi)
2 −

n−1∑
i=0

B(ti)∆ti
∣∣2) = n−1∑

i=0

2ti∆t
2
i ≤ 2||Pn|| · T 2 → 0.

Hence the limit of the last term in (3.2.2) equals
∫ T

0
B(t)dt.

Theorem 3.2.4. For X ∈ L2
ad([0, T ]× Ω), the Ito integral

Y (t) =

∫ t

0

X(s)dB(S)

has mean zero and variance σ2 = E(Y (t))2 =
∫ t

0
E(|X(t)|2)dt. Moreover {Yt}t

is a martingale.

Proof. The first part is a consequence of the approximation by adaptable step

processes as in Lemma 3.2.2. The second part follows from the same proof as

for the Wiener integral (Theorem 3.1.7). �

In the following we consider the continuity of the sample path of Y (t). We

need a continuous version of Doobs submartingale inequality (Theorem 1.4.9,

Corollary 1.4.10).
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Lemma 3.2.5. Let {Y (t)}t≥0 be a submartingale and assume that almost all

sample paths of Y (t) are continuous. Then

λP ( sup
0≤t≤T

Y (t) ≥ λ) ≤ E(Y (T )+) .

Furthermore, we have

λP ( sup
0≤t≤T

|Y (t)| ≥ λ) ≤ E(|Y (T )|) .

Proof. The continuity of the sample paths allows us to write

{
sup

0≤t≤T
Y (t) ≥ λ

}
=

∞∩
n=1

∞∪
m=1

{
max

0≤ k
2m

≤T
Y (k/2m) ≥ λ− 1

n

}
.

By applying Theorem 1.4.9 and Corollary 1.4.10 to the submartingale

{Y (1/2m), Y (2/2m), · · · , Y (l/2m), Y (T )} ,

and taking limit, the lemma follows. �

Theorem 3.2.6. Suppose X ∈ L2
ad([0, T ]×Ω), then the Ito integral {Y (t)}t is

a continuous process on [0, T ], i.e., almost all its sample paths are continuous.

Proof. We consider the step process first. Let X(t) =
∑n−1

i=0 ξiχ[ti,ti+1), ξi ∈ Fti .

Then

Y (t, ω) =
k−2∑
i=0

ξi(ω)∆Bi(ω) + ξk−1(B(t, ω)−B(tk−1, ω)).

It is easy to see that Y (·, ω) is continuous as B(·, ω) is continuous.

Next we consider the general case, let {X(n)}n be a sequence of step stochas-

tic processes in L2
ad([0, T ]× Ω) such that

lim
n→∞

∫ T

0

E(| X(S)−X(n)(s) |2)ds = 0.

By choosing a subsequence if necessary, we may assume that∫ T

0

E(|X(s)−X(n)(s)|2)ds ≤ 1

n6
.
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Let Y (n)(t) =
∫ T

0
X(n)(t)dB(t), Y (t) =

∫ T

0
X(t)dB(t). Then by Lemma 3.2.4,

P ( sup
0≤t≤T

|Y (m)(t)− Y (n)(t)| ≥ 1

n
) ≤ nE(|Y (m)(t)− Y (n)(t)|).

Let m→ ∞, we have

P ( sup
0≤t≤T

|Y (t)− Y (n)(t)| ≥ 1

n
) ≤ nE(|Y (T )− Y (n)(T )|)

≤ n
(
E(|Y (T )− Y (n)T )|2)

)1/2
≤ n

(
T

∫ T

0

E(|X(s)−X(n)(s)|2)ds)1/2

≤ n
T 1/2

n3
=
T 1/2

n2
.

Since
∑
n−2 <∞. By the Borel-Cantelli lemma, we have

P ( sup
0≤t≤T

|Y (t)− Y n(t)| ≥ 1

n
i.o.) = 0 .

Let A be the complement of the above set. Then P (A) = 1, and let B be the

set of ω such that Y (n)(·, ω) is continuous for all n. Then P (A ∩ B) = 1, and

for each ω ∈ A ∩B,

sup
0≤t≤T

|Y (t, ω)− Y (n)(t, ω)| ≤ 1

n

except for finitely many n. This implies that Y n(·, ω) → Y (·, ω) uniformly.

Hence Y (·, ω)is continuous. �

In the rest of this section, we consider two important extension of the Ito

integral. The first one is to extend the integrand to a larger class of processes.

We use Lad(Ω, L
2[0, T ]) to denote the class of processes {X(t)}t≥0 such that

(i) X(t) is adapted to {Ft}t≥0;

(ii)
∫ T

0
| X(t, ω) |2 dt <∞ a.s.

It is clear that if X(·, ω) has continuous sample path, then (ii) is satisfied. Also

L2
ad([0, T ]× Ω) ⊂ Lad(Ω, L

2[0, T ])
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as X ∈ L2
ad([0, T ]×Ω)),

∫ T

0
E(|X(t)|2)dt <∞, which implies

∫ T

0
|X(t, ω)|2dt <

∞ a.e.

Example 3.2.3. Consider X(t) = eB(t)2 . Then a direct calculation shows that

E(X(t)) =

 (1− 4t)−1/2 if 0 ≤ t ≤ 1
4
.

∞ otherwise

Hence X /∈ L2
ad([0, T ] × Ω). On the other hand X(·, ω) is continuous a.e.,∫ 1

0
| X(t, ω) |2 dt <∞ a.e., so that X ∈ Lad(Ω, L

2[0, T ]).

We can define the Ito integral as before using the following lemma.

Lemma 3.2.7. Let X ∈ Lab(Ω, L
2[0, T ]). Then there exists a sequence of step

process X(n) ∈ L2
ab([0, T ]× Ω)such that

lim
n→∞

∫ T

0

|X(n)(t)−X(t)|2dt = 0

in probability.

The sequence X(n)(t) can be taken as the truncation of X(t) at level n:

X(n)(t, ω) =

 X(t, ω) if
∫ t

0
|X(s, ω)|2ds ≤ n;

0 otherwise.

The resulting integral Y (t) =
∫ t

0
X(t)dB(t) may not have finite expectation.

Hence is not necessary integrable, and we cannot consider the martingale prop-

erty of Y (t) directly. Nevertheless, we can replace by the following local mar-

tingale.

Let τn be the stoping time defined by

τn(ω) = inf{t :
∫ t

0

|X(s, ω)|2ds > n}
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and let

Y (t ∧ τn) =
∫ t∧τn

0

X(t, ω)dB(t) =

∫ T

0

X(n)dB(t).

It is direct to show that for each n, Y (t ∧ τn) is a martingale with respect to

{Ft}. We say that Y (t) has the local martingale property. By using this we

can show that Y (t, ω) has continuous sample path for almost all ω ∈ Ω.

Next we consider extending the ”integrator” to more general processes. A

motivation of this is the following example. Consider X(t) ∈ L2
ad([0, T ] × Ω)

and let

Y (t) =

∫ T

0

X(t)dB(t)

be the Ito integral. For convenience we can write it as

dY (t) = X(t)dB(t).

Then it is reasonable to have a definition so that∫ T

0

Z(t)dY (t) =

∫ T

0

Z(t)X(t)dB(t).

Note that Y (t) is a martingale (Theorem 3.2.4). The Ito integral theory can

be extended to
∫ T

0
X(t)dM(t) where M(t) is a martingale with respect to

some filtration {Ft}. In this extension, M(t) is not necessary continuous, for

example it covers the Poisson processes also.

For this the Doob-Meyer decomposition of submartingale plays an impor-

tant role. For a submartingale L(t), the decomposition is

L(t) = Z(t) + C(t)

where Zt is a martingale, and C(t) is a non-negative increasing process. (Recall

we have proved Doob’s decomposition for discrete time (Theorem 1.4.3).) A

basic application of this is on the submartingale M(t)2. The decomposition is

M(t)2 = Z(t) + C(t) which yields

E((∆Mi)
2) = E(∆Ci)
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where ∆Mi =M(ti+1)−M(ti) corresponding to some partition. We can define

Ito integral
∫ T

0
X(t)dM(t) similar to the Brownian motion case; and C(t) plays

the role of t as the quadratic variation of B(t) :

(∆Mi)
2 = (Mi+1 −Mi)

2 =M2
i+1 −M2

i − 2Mi(Mi+1 −Mi).

Hence

E((∆Mi)
2) = E((Mi+1 −Mi)

2)

= E
(
E(M2

i+1 −M2
i − 2Mi(Mi+1 −Mi)/Fti)

)
= E

(
E
(
Z(ti+1) + C(ti+1)− (Z(ti) + C(ti)))/Fti

))
= E(C(ti+1)− C(ti))

= E(∆Ci).

The reader can refer to [3, p.75-92] for detail.
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Exercises

1. Let X =
∫ b

a
|B(t)|dB(t). Find the variance of the random variable X.

2. Show that Xt = eB(t) − 1− 1
2

∫ t

0
eB(s)ds is a martingale.

3. Show that X(t) =
∫ t

0
eB(s)2dB(s) is not a martingale.

4. Let M(t) = B3(t)− 3tB(t). Show that M(t) is a martingale, first directly

then by using Ito integral.

5. LetB1(t), B2(t) be independent Brownian motions. LetX(t) = log(B1(t)
2+

B2(t)
2).

(a) Show that E(|X(t)|) <∞ for all t > 0, and find E(|X(t)|).

(b) Show that X(t) is not a martingale, but a local martingale.

(The example shows that a local martingale having integrability does not need

to be a martingale.)

6. Let N(t) be the Poisson process. Show that Ñ(t) = N(t)− λt is a martin-

gale. Also find the Doob-Meyer decomposition for Ñ(t)2.
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3.3 Ito formula

The following is the basic theorem of the Ito calculus.

Theorem 3.3.1. Let f ∈ C2 on R, then any 0 ≤ a ≤ t

f(B(t))− f(B(a)) =

∫ t

a

f ′(B(s))dB(s) +
1

2

∫ t

a

f ′′(B(s))ds. (3.3.1)

Example 3.3.1. For f(x) = x2, we have

B(t)2 − B(a)2 = 2

∫ t

a

B(s)dB(s) + (t− a).

For f(x) = et, we have

eB(t) − eB(a) =

∫ t

a

eB(s)dB(s) +
1

2

∫
eB(s)ds .

The main idea to prove Theorem 3.3.1 is to make use of the two term Taylor

polynomial:

f(x)− f(x0) = f ′(x0)(x− x0) + 1/2f ′′(x0 + λ(x− x0) + (x− x0)
2).

Hence for any partition of [a, t], we have

f(B(t))− f(B(a)) =
n−1∑
i=0

(f(B(ti+1))− f(B(ti)))

=
n−1∑
i=0

f ′(B(ti))∆Bi + 1/2
n−1∑
i=0

f ′′(B(ti) + λ∆Bi)(∆Bi)
2.

The first sum will converge to
∫ t

a
f(B(s))dB(s) by the definition of Ito integral.

The second sum will converge to the second integral of (3.3.1) due to the

bounded quadratic variation of B(t), it is proved in the following two lemmas.
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Lemma 3.3.2. Let g be a continuous function on R and let Fn = {a =

t0, · · · , tn = t} be a partition of [a, t] and let 0 < λi < 1, i = 0, · · · , n. Then

there exists a subsequence

Zn =
n−1∑
i=0

(
g(B(ti) + λi∆Bi) − g(B(ti))

)
(∆Bi)

2 → 0 a.e.

as ||Pn|| → 0.

Proof. let

ξn = max
0≤i≤1
0<λ<1

|g(B(i) + λ∆Bi) − g(B(ti))|

Then |Zn| ≤ ξn
∑n−1

i=0 (∆Bi)
2. By the continuity of g(x) and B(t), ξn → 0

a.s. On he other hand,
∑n−1

i=0 (∆Bi)
2 → (t − a) in L2(Ω). Hence it has a

subsequence converges to (t− a) a.e. The lemma follows from this. �

Lemma 3.3.3. With the assumption as in Lemma 3.3.2. Then

Sn =
n−1∑
i=0

g(B(ti))
(
(∆Bi)

2 − (ti+1 − ti)
)
→ 0

in probability as ||Pn|| → 0.

Proof. We first consider a truncation of B(t) at L > 0. Let

A
(L)
i = {|B(ti)| ≤ L for all j ≤ i}, 1 ≤ i ≤ n.

and let

Sn,L =
n−1∑
i=0

g(B(ti)) χA
(L)
i

((∆Bi)
2 −∆ti) :=

n−1∑
i=0

Yi.

We claim that E(S2
n,L) → 0 as ||Pn|| → 0. Indeed, let Xi = (∆Bi)

2−(ti+1−ti).

Then for i ̸= j (say i < j),

E(YiYj) = E
(
E(YiYj|Ftj

)
= E

(
Yi g(B(tj))χA

(L)
i
E(Xj | Ftj)

)
= 0 .
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On the other hand, note that Y 2
i ≤ max|g(x)|≤L |g(x)|2X2

i . Hence

E(Y 2
i ) ≤

(
max
|x|≤L

|(x)|2
)
E(X2

i ) = 2max
|x|≤L

|g(x)|2(ti+1 − ti)
2.

It follows that

E(S2
n,L) =

n−1∑
i=0

E(Y 2
i ) ≤ 2 max

||x||≤l
|g(x)|2 · ||Pn|| · (t− a) → 0

as ||∆n|| → 0, i.e., Sn,L → 0 in L2, and in probability as well for ||Fn|| → 0.

Next we observe that {Sn ̸= Sn,L} ⊆ {max0≤s≤t |B(s)| > L}. This together

with Doob’s submartingale inequality (Lemma 3.2.6)

P (Sn ̸= Sn,L) ≤ P (max
0≤s≤t

|B(s)| > L) ≤ 1

L
E(B(t)) =

1

L

√
2t

π
.

which → 0 as ||Pn|| → 0.

Finally note that for ϵ > 0,

{|Sn| > ϵ} ⊂ {|Sn,L| > ϵ} ∪ {Sn ̸= Sn,L}.

This implies

P (|Sn| > ϵ) ≤ P (|Sn,L| > ϵ) + P (Sn ̸= Sn,L).

By the above, we have the right side < ϵ for n, L large enough. Hence the

lemma follows. �

Theorem 3.3.4. Let f(t, x) be continuous function and has continuous partial

derivatives
∂f

∂t
,
∂f

∂x
,
∂2f

∂x2
. Then

f(t, B(t))− f(a,B(a)) =

∫ t

a

∂f

∂t
(s, B(s))ds +

∫ t

a

∂f

∂x
(s,B(s))dB(s)

+
1

2

∫ t

a

∂2f

∂x2
(s,B(s)))ds .
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We use the same idea as in Theorem 3.3.1.

f(t, x)− f(s, x0) = (f(t, x)− f(s, x)) + (f(s, x)− f(s, x0))

=
∂f

∂t
(s+ ρ(t− s), x)(t− s) +

∂f

∂x
(s, x0)(x− x0)

+
1

2

∂2f

∂x2
(s, x0 + λ(x− x0))(x− x0)

2.

Hence if we write f(t, B(t))−f(a,B(a)) =
∑

1 +
∑

2+
∑

3, then as in Theorem

3.3.1, we can show that the sums will converge to the respective terms a.s. We

omit the detail.

Example 3.3.2. Let f(t, x) = tx2 , then
∂f

∂t
= x2,

∂f

∂x
= 2tx, and

∂2f

∂x2
= 2t.

Hence

tB(t)2 =

∫ t

0

B(s)2ds + 2

∫ t

0

sB(s)dB(s) +
1

2
t2 .

We can use differentials to express the integrals

df(B(t)) = f ′(B(t))dB(t) +
1

2
f ′′(B(t))dt

for Theorem 3.3.1, and

df =
∂f

∂t
ds +

∂f

∂x
dB(s) +

1

2

∂2f

∂x2
ds

for Theorem 3.3.4. Also we can write them as in the form of the fundamental

theorem of calculus.

(1) Let F (t) be the antiderivative of f(t), then∫ b

a

f(B(t))dB(t) =
[
F (B(t))

]b
a
− 1

2

∫ b

a

f ′(B(t))dt .

(2) Let F (t, x) be the antiderivative of f(t, x) with respect to x. Then∫ b

a

f(t, B(t))dB(t) =
[
F (t, B(t))

]b
a
−
∫ b

a

(∂F
∂t

(t, B(t)) +
1

2

∂2F

∂x2
(t, B(t))

)
dt .
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Example 3.3.3. Evaluate
∫ t

0
B(s)eB(s)dB(s).

Let f(x) = xex, then F (x) = xex − ex + c, f ′(x) = xex + ex. Hence∫ t

0

B(s)eB(s)dB(s) = (B(t)− 1)eB(t) +
1

2

∫ t

0

(B(s) + 1)eB(s)ds .

Definition 3.3.5. An Ito process is a stochastic process of the from

X(t) = X(a) +

∫ t

a

φ(s)dB(s) +

∫ t

a

ψ(s)ds

where (i) X(a) ∈ Fa; (ii) φ, ψ are stochastic processes in L2
ad([0, T ]× Ω).

A short hand of this is dX(t) = φ(t)dB(t) + ψ(t)dt.

Theorem 3.3.6. Let X(t) be an Ito process. Suppose θ(t, x) is continuous

and has continuous partial derivatives
∂θ

∂t
,
∂θ

∂x
,
∂2θ

∂x2
. Then

θ(t,Xt) = θ(a,Xa) +

∫ t

a

∂θ

∂t
(s,Xs)ds

+

∫ t

a

∂θ

∂x
(s,Xs)φ(s)dB(s) +

1

2

∂2θ

∂x2
(s,Xs)φ(s)

2ds

+

∫ t

a

∂θ

∂x
(s,Xs)ψ(s)ds

The proof is the same as before. Formally,

dθ =
∂θ

∂t
dt+

∂θ

∂x
dX(t) +

1

2

∂2θ

∂x2
(dX(t))2

=
∂θ

∂t
dt+

∂θ

∂x
(φ(t)dB(t) + ψ(t)dt) +

1

2

∂2θ

∂x2
φ(t)2dt .

Example 3.3.4. Let X(t) =
∫ t

0
φ(s)dB(s)− 1

2

∫ t

0
φ(s)2ds, 0 ≤ t ≤ 1. Then

d(eX(t)) = eX(t)dX(t) +
1

2
eX(t)(dX(t))2

= eX(t)(φ(t)dB(t)− 1

2
φ(t)2dt) +

1

2
eX(t)φ(t)2dt

= eX(t)φ(t)dB(t) .
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Example 3.3.5. Consider dX(t) = αdB(t)−βX(t)dt, X(0) = x0. Find X(t)

for this stochastic differential equation.

Take θ(t, x) = eβtx. Then

d(eβtX(t)) = βeβtX(t)dt+ eβtdX(t) + 0

= βeβtX(t)dt+ eβt(αdB(t)− βX(t)dt)

= eβtαdB(t).

Hence eβtX(t) = x0 + α
∫ t

0
eβsdB(s), i.e., the solution is

X(t) = e−βtx0 + α

∫ t

0

e−β(t−s)dB(s).

Example 3.3.6. For dX(t) = aX(t)dt + bX(t)dB(t), X(0) = x0. By using

θ(s, x) = eat+bx, then the solution is

X(t) = x0e
(a−b2/2)t+bB(t) .

Example 3.3.7. For dX(t) = X(t)3dt+X(t)2dB(t), by using θ(t, x) =
1

1− x
,

then the solution is

X(t) =
1

1−B(t)
.



3.3. ITO FORMULA 107

Exercises

1. Complete Examples 3.3.6 and 3.3.7 .

2. Suppose X(t) satisfies the stochastic differential equation (SDE) dX(t) =

ν(t)dt+ σ(t)dB(t). Assume X(t) > 0. Find the SDE of Y (t) =
√
X(t).

3. Find the SDE for X(t) = cos(B(t)) and Y (t) = sin(B(t)).

4. Solve the SDE dX(t) = B(t)X(t)dt+B(t)X(t)dB(t), X(0) = 1.

5. Let B(t) = (B1(t), B2(t), B3(t)) be the Brownian motion on R3 starts at

a ̸= 0. Use f(x) = |x|−1 to show that

1

|B(t)|
=

1

|a|
−

3∑
i=0

∫ t

0

Bi(s)

|B(s)|3
dBi(s) .

6. Show that

W (t) =
3∑

i=0

∫ t

0

Bi(s)

|B(s)|
dBi(s)

is a Brownian motion.
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3.4 Two theorems on exponential processes

For a locally square integrable function f : R+ → R, we know that Y (t) =∫ t

0
f(s)dB(t) is a normal random variable with mean 0 and variance σ2 =∫ t

0
|f(s)|2ds. Hence

E(e
∫ t
0 f(s)dB(s)) = E(eY (t)) =

∫ ∞

−∞
ey

1√
2πσ

e−
y2

2σ2 dt

= eσ
2/2 = e

1
2

∫ t
0 |f(s)|2ds.

Let Z(t) =
∫ t

0
f(s)dB(s)− 1

2

∫ t

0
|f(s)|2ds, and consider eZ(t). Then E(eZ(t)) =

E(eY (t))/e
1
2

∫ t
0 |f(s)|2ds = 1, and it satisfies the SDE (see Example 3.3.4)

d(eZ(t)) = eZ(t)f(t)dB(t),

i.e.,

eZ(t) = 1 +

∫ t

0

f(s)eZ(t)dB(s). (3.4.1)

Moreover, in view of the right hand side, {eZ(t)}t≥0 is a martingale (Theorem

3.2.4 as Ito integral).

We first prove Ito’s representation theorem.

Theorem 3.4.1 (Ito’s representation theorem). For any Y ∈ L2(Ω,FT , P ),

there is a unique X ∈ L2
ad([0, T ]× Ω) such that

Y = E(Y ) +

∫ T

0

X(t)dB(t). (3.4.2)

Lemma 3.4.2. Let D be the family of step functions

f(t) =
n∑

i=1

ξiχ[ti−1,ti)(t), 0 ≤ t ≤ T,

for some 0 = t0 < t1 < · · · < tn = T , and ξi ∈ R. Then the linear combination

of the family

ED = {e
∫ T
0 f(s)dB(s)− 1

2

∫ T
0 f(s)2ds : f ∈ D}

is dense in L2(Ω,FT , P ).
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Proof. Let Y ∈ L2(Ω,FT , P ) such that

E(Y · e
∫ T
0 f(s)dB(s)− 1

2

∫ T
0 f(s)2ds) = 0, ∀f ∈ D.

We show that Y = 0. This implies ED is dense.

The identity implies

0 = E(Y · e
∑n

i=1ξi∆Bi)

= E(E(Y · e
∑n

i=1ξi∆Bi | B(t1), · · · , B(tn)))

= E(E(Y | B(t1), · · · , B(tn))e
∑n

i=1ξi∆Bi),

i.e.,

0 =
n∏

i=1

∫
· · ·

∫
yt1,··· ,tn(x1, · · · , xn)eξixi

1√
2π(ti − ti−1)

e
− xi

2(ti−ti−1)dx1 · · · dxn.

We can consider ξi to be any complex number by analytic extension. By Fourier

transform, we conclude that yt1,··· ,tn = 0, i.e., E(Y | B(t1), · · · , B(tn)) = 0.

Since t1, · · · , tn are arbitrary, we conclude that Y = 0 w.r.t. P.

Proof of theorem 3.4.1. The uniqueness follows from the isometry of the stochas-

tic integral: if X1(t), X2(t) are two representations in (3.4.2), then 0 =∫ T

0
(X1(t) − X2(t))dB(t), which implies 0 =

∫ T

0
E((X1(t) − X2(t))

2)dt. Thus

X1 = X2.

Let Y denote the class of random variables that (3.4.2) holds. Then by

Lemma 3.4.2 and (3.4.1), D ⊆ Y . We show that Y is closed in L2(Ω,FT , P ).

Then the theorem follows.

Let Yn ∈ Y and Yn → Y in L2(Ω,FT , P ), then there isX(n) ∈ L2
ad([0, T ]×Ω)

such that

Yn = E(Yn) +

∫ T

0

X(n)(s)dB(s).
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As {Yn} is Cauchy, and

E(|Yn − E(Yn)|2) = σ2
Yn

=

∫ T

0

E(|X(n)(s)|2)ds.

The isometry implies X(n)(s) is Cauchy in L2
ad([0, T ] × Ω). This implies that

X(n) → X for some X ∈ L2
ad([0, T ]×Ω) and Y = E(Y )+

∫ T

0
X(s)dB(s). This

completes the proof.

Theorem 3.4.3 (Martingale representation theorem). Suppose {Mt : t ∈

[0, T ]} is a martingale with respect to Ft and E(M
2
t ) < ∞. Then there exists

a unique X ∈ L2
ad([0, T ]× Ω) such that

Mt = E(M0) +

∫ t

0

X(s)dB(s).

It follows that the sample path Mt is continuous.

Proof. Applying Ito’s representation theorem for Y =Mt, we have

MT = E(MT ) +

∫ T

0

X(s)dB(s).

Hence for 0 ≤ t ≤ T , we obtain

Mt = E(MT | Ft) = E(M0) + E(

∫ T

0

X(s)dB(s) | Ft)

= E(M0) +

∫ t

0

X(s)dB(s).

Example 3.4.1. For Y = B(T )3, by Ito’s formula

B(T )3 =

∫ T

0

3B(t)2dB(t) + 3

∫ T

0

B(t)dt,

and by integration by parts∫ T

0

B(t)dt = TB(T )−
∫ T

0

tdB(t) =

∫ T

0

(T − t)dB(t).

Hence

B(T )3 =

∫ T

0

3(B(t)2 + (T − t))dB(t).
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Our next theorem (Girsanov theorem) says that a B.M. with drift (e.g.

B(t) + λt, can be seen as a B.M. with a change of probability.

First we observe that for any random variable L on (Ω,F , P ) such that

E(L) = 1. Then

Q(A) = E(χAL) =

∫
A

LdP

defines a probability measure on Ω with dQ
dP

= L, and for Y ∈ L1(Ω,F , Q),

EQ(Y ) =

∫
Y dQ =

∫
Y · LdP = EP (Y · L).

Example 3.4.2. Let X be a normal random variable N(m,σ2). Consider

L = e−
m
σ2X+ m2

2σ2 . Then E(L) = 1. Let Q be the probability such that dQ
dP

= L.

Then

EQ(e
itX) = EP (e

itX · L) = 1√
2πσ

∫ ∞

−∞
e−

(x−m)2

2σ2 −mx
σ2 + m2

2σ2+itxdx = e−
σ2t2

2 .

It follows that X is a normal random variable N(0, σ2) w.r.t. Q.

For fixed λ > 0, and for Lt = eλB(t)−λ2

2
t, {Lt}t≥0 is a martingale with

E(Lt) = 1 and satisfies

Lt = 1 +

∫ t

0

λLsdB(s).

We see that LT is the density of the probability space (Ω,FT , Q) with

Q(A) = E(χALT ), for A ∈ FT .

The martingale property implies that for any t ∈ [0, T ], Q in (Ω,Ft, P ) has

density Lt with respect to P , i.e., if A ∈ Ft, then

Q(A) = E(χALT ) = E(E(χALT | Ft))

= E(χAE(LT | Ft)) = E(χALt).
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Theorem 3.4.4 (Girsanov). In (Ω,FT , Q), the stochastic process Wt = B(t)−

λt is a Brownian motion.

Lemma 3.4.5. Suppose X ∈ L1(Ω,F , P ) and G ⊆ F is a σ-field such that

E(eiuX | G) = e−
u2σ2

2 .

Then X is independent of G and is a normal random variable N(0, σ2).

Proof. For any A ∈ G, by the definition of conditional expectation,

E(χAe
iuX) =

∫
A

eiuXdP =

∫
A

E(eiuX | G)dP

=

∫
A

e−
u2σ2

2 dP = e−
u2σ2

2 P (A).

Choosing A = Ω, the characteristic function is

E(eiuX) = e−
u2σ2

2 .

This implies X ∼ N(0, σ2).

To show the independence, for any A ∈ G, the c.f. of X with respect to

the conditional probability of A is

E(eiux | A) = e−
u2σ2

2 ,

hence it is again a normal random variable N(0, σ2), i.e., the law of X given

A is again a normal distribution:

P (X ≤ x | A) = Φ(x/σ).

Hence

P ((X ≤ x) ∩ A) = P (A)Φ(x/σ) = P (A)P (X ≤ x).

This implies X and G are independent.
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Proof of Theorem 3.4.4. It suffices to show that with (Ω,FT , Q) and s < t ≤

T , the incrementWt−Ws is independent of Fs and is a normal random variable

N(0, t− s).

We claim that for A ∈ Fs,

EQ(χAe
iu(Wt−Ws)) = Q(A)e−

u2

2
(t−s),

then Lemma 3.4.5 and the proof imply the theorem. Indeed,

EQ(χAe
iu(Wt−Ws)) = E(χAe

iu(Wt−Ws)Lt)

= E(χAe
iu(B(t)−B(s))−iuλ(t−s)+λ(B(t)−B(s))−λ2

2
(t−s)Ls)

= E(χALs)E(e
(iu+λ)(B(t)−B(s)))e−iuλ(t−s)−λ2

2
(t−s)

= Q(A)e
(iu+λ)2

2
(t−s)−iuλ(t−s)−λ2

2
(t−s)

= Q(A)e−
u2

2
(t−s).

Theorem 3.4.6. Let {θt}0≤t<T be adaptable to {Ft}t and E(e
1
2

∫ T
0 θ2t dt) < ∞.

Then the process

Wt = B(t)−
∫ t

0

θsds

is a Brownian motion with respect to Q defined by

Lt = e
∫ t
0 θsdB(s)− 1

2

∫ t
0 θ2sds.

(Note that Lt satisfies dLt = θsLsdB(s), i.e., Lt = 1 +
∫ t

0
θsLsdB(s) and

E(Lt) = 1.)
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Example 3.4.3. Let τa = inf{t ≥ 0 : Bt = a}, and let dQ
dP

|Ft = Lt, where

Lt = eλB(t)−λ2

2
t.

We calculate Q(τa <∞). It is equivalent to P (τa <∞) forWt = B(t)+λt.

Q(τa ≤ t) = E(χ{τa≤t}Lt)

= E(χ{τa≤t}E(Lt | Fτa∧t))

= E(χ{τa≤t}Lτa∧t)

= E(χ{τa≤t}Lτa)

= E(χ{τa≤t}e
λa− 1

2
λ2τa)

=

∫ t

0

eλa−
1
2
λ2sf(s)ds,

where f is the density of τa, f(s) =
|a|√
2π
s−

3
2 e−

a2

2s .

Hence with respect to Q, τa has density

|a|√
2πs3

e−
(a−λs)2

2s , s > 0.

Letting t→ ∞, we see that

Q(τa <∞) = eλaE(e−
1
2
λ2τa) = eλa−|λa|

=

 1, if λa ≥ 0,

e−2λa, if λa < 0.


